dc.contributor.author |
Spanoudaki, K |
en |
dc.contributor.author |
Stamou, AI |
en |
dc.contributor.author |
Nanou-Giannarou, A |
en |
dc.date.accessioned |
2014-03-01T01:30:10Z |
|
dc.date.available |
2014-03-01T01:30:10Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0022-1694 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19488 |
|
dc.subject |
Groundwater modelling |
en |
dc.subject |
Integrated modelling |
en |
dc.subject |
Stream-aquifer interaction |
en |
dc.subject |
Surface water modelling |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.classification |
Geosciences, Multidisciplinary |
en |
dc.subject.classification |
Water Resources |
en |
dc.subject.other |
Analytical solutions |
en |
dc.subject.other |
Computational costs |
en |
dc.subject.other |
Darcy's law |
en |
dc.subject.other |
Discretisation |
en |
dc.subject.other |
Finite-difference methods |
en |
dc.subject.other |
Fully implicit scheme |
en |
dc.subject.other |
Governing equations |
en |
dc.subject.other |
Groundwater equations |
en |
dc.subject.other |
Groundwater flow equation |
en |
dc.subject.other |
Groundwater modelling |
en |
dc.subject.other |
Groundwater models |
en |
dc.subject.other |
Integrated modelling |
en |
dc.subject.other |
New approaches |
en |
dc.subject.other |
Real-world |
en |
dc.subject.other |
Reynold save raging |
en |
dc.subject.other |
Semi-implicit scheme |
en |
dc.subject.other |
Steady state Navier-Stokes equations |
en |
dc.subject.other |
Stream-aquifer interaction |
en |
dc.subject.other |
Surface water flows |
en |
dc.subject.other |
Surface water-groundwater interaction |
en |
dc.subject.other |
Water exchange |
en |
dc.subject.other |
Aquifers |
en |
dc.subject.other |
Computational efficiency |
en |
dc.subject.other |
Difference equations |
en |
dc.subject.other |
Fluid dynamics |
en |
dc.subject.other |
Groundwater flow |
en |
dc.subject.other |
Groundwater resources |
en |
dc.subject.other |
Hydraulics |
en |
dc.subject.other |
Hydrogeology |
en |
dc.subject.other |
Hydrostatic pressure |
en |
dc.subject.other |
Navier Stokes equations |
en |
dc.subject.other |
Surface waters |
en |
dc.subject.other |
Three dimensional |
en |
dc.subject.other |
Surface analysis |
en |
dc.subject.other |
computational fluid dynamics |
en |
dc.subject.other |
finite difference method |
en |
dc.subject.other |
flow modeling |
en |
dc.subject.other |
groundwater flow |
en |
dc.subject.other |
groundwater-surface water interaction |
en |
dc.subject.other |
hydrostatic pressure |
en |
dc.subject.other |
Navier-Stokes equations |
en |
dc.subject.other |
Reynolds number |
en |
dc.subject.other |
surface water |
en |
dc.subject.other |
three-dimensional modeling |
en |
dc.title |
Development and verification of a 3-D integrated surface water-groundwater model |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jhydrol.2009.06.041 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jhydrol.2009.06.041 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
Coupled modelling of surface and subsurface systems is a valuable tool for quantifying surface water-groundwater interactions. In the present paper, the 3-D non-steady state Navier-Stokes equations, after Reynolds averaging and with the assumption of a hydrostatic pressure distribution, are for the first time coupled to the 3-D saturated groundwater flow equations in an Integrated suRface watEr-groundwater modEl (IRENE). A finite-difference method is used for the solution of the governing equations of IRENE. A semi-implicit scheme is used for the discretisation of the surface water flow equations and a fully implicit scheme for the discretisation of the groundwater flow equations. The two sets of equations are coupled at the common interface of the surface water and groundwater bodies, where water exchange takes place, using Darcy's law. A new approach is proposed for the solution of the coupled surface water and groundwater equations in a simultaneous manner, in such a fashion that gives computational efficiency at low computational cost. IRENE is verified against three analytical solutions of surface water-groundwater interaction, which are chosen so that different components of the model can be tested. The model closely reproduces the results of the analytical solutions and can therefore be used for analysing and predicting surface water-groundwater interactions in real-world cases. (C) 2009 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Journal of Hydrology |
en |
dc.identifier.doi |
10.1016/j.jhydrol.2009.06.041 |
en |
dc.identifier.isi |
ISI:000270472100011 |
en |
dc.identifier.volume |
375 |
en |
dc.identifier.issue |
3-4 |
en |
dc.identifier.spage |
410 |
en |
dc.identifier.epage |
427 |
en |