HEAL DSpace

Differential evolution solution to transformer no-load loss reduction problem

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Georgilakis, PS en
dc.date.accessioned 2014-03-01T01:30:12Z
dc.date.available 2014-03-01T01:30:12Z
dc.date.issued 2009 en
dc.identifier.issn 1751-8687 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19495
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Active parts en
dc.subject.other Combinatorial optimisation en
dc.subject.other Core manufacturing en
dc.subject.other Differential Evolution en
dc.subject.other Distribution transformer en
dc.subject.other Grouping process en
dc.subject.other Load loss en
dc.subject.other Multi-layer perceptrons en
dc.subject.other New approaches en
dc.subject.other Population diversity en
dc.subject.other Scaling factors en
dc.subject.other Wound core en
dc.subject.other Combinatorial optimization en
dc.subject.other Electric load loss en
dc.subject.other Evolutionary algorithms en
dc.subject.other Integrodifferential equations en
dc.subject.other Pattern recognition systems en
dc.subject.other Problem solving en
dc.title Differential evolution solution to transformer no-load loss reduction problem en
heal.type journalArticle en
heal.identifier.primary 10.1049/iet-gtd.2009.0184 en
heal.identifier.secondary http://dx.doi.org/10.1049/iet-gtd.2009.0184 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract After the completion of core manufacturing and before the assembly of transformer active part, 2N small individual cores and 2N large individual cores are available and have to be optimally combined into N transformers so as to minimise the total no-load loss (NLL) of N transformers. This complex combinatorial optimisation problem is called transformer no-load loss reduction (TNLLR) problem. A new approach combining differential evolution (DE) and multilayer perceptrons (MLPs) to solve TNLLR problem is proposed. MLPs are used to predict NLL of wound core distribution transformers. An improved differential evolution (IDE) method is proposed for the solution of TNLLR problem. The modifications of IDE in comparison to the simple DE method are (i) the scaling factor F is varied randomly within some range, (ii) an auxiliary set is employed to enhance the population diversity, (iii) the newly generated trial vector is compared with the nearest parent and (iv) the simple feasibility rule is used to treat the constraints. Application results show that the performance of the proposed method is better than that of two other methods, that is, conventional grouping process and genetic algorithm. Moreover, the proposed method provides 7.3 reduction in the cost of transformer main materials. © The Institution of Engineering and Technology. en
heal.publisher INST ENGINEERING TECHNOLOGY-IET en
heal.journalName IET Generation, Transmission and Distribution en
dc.identifier.doi 10.1049/iet-gtd.2009.0184 en
dc.identifier.isi ISI:000270789900008 en
dc.identifier.volume 3 en
dc.identifier.issue 10 en
dc.identifier.spage 960 en
dc.identifier.epage 969 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής