HEAL DSpace

Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Saez-Rodriguez, J en
dc.contributor.author Alexopoulos, LG en
dc.contributor.author Epperlein, J en
dc.contributor.author Samaga, R en
dc.contributor.author Lauffenburger, DA en
dc.contributor.author Klamt, S en
dc.contributor.author Sorger, PK en
dc.date.accessioned 2014-03-01T01:30:13Z
dc.date.available 2014-03-01T01:30:13Z
dc.date.issued 2009 en
dc.identifier.issn 17444292 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19501
dc.subject Logical modelling en
dc.subject Protein networks en
dc.subject Signal transduction en
dc.subject.other cytokine en
dc.subject.other protein en
dc.subject.other article en
dc.subject.other computer program en
dc.subject.other controlled study en
dc.subject.other cytokine production en
dc.subject.other information science en
dc.subject.other liver cell en
dc.subject.other medical literature en
dc.subject.other priority journal en
dc.subject.other protein analysis en
dc.subject.other protein function en
dc.subject.other signal transduction en
dc.subject.other Mammalia en
dc.title Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction en
heal.type journalArticle en
heal.identifier.primary 10.1038/msb.2009.87 en
heal.identifier.secondary 331 en
heal.identifier.secondary http://dx.doi.org/10.1038/msb.2009.87 en
heal.publicationDate 2009 en
heal.abstract Large-scale protein signalling networks are useful for exploring complex biochemical pathways but do not reveal how pathways respond to specific stimuli. Such specificity is critical for understanding disease and designing drugs. Here we describe a computational approach-implemented in the free CNO software-for turning signalling networks into logical models and calibrating the models against experimental data. When a literature-derived network of 82 proteins covering the immediate-early responses of human cells to seven cytokines was modelled, we found that training against experimental data dramatically increased predictive power, despite the crudeness of Boolean approximations, while significantly reducing the number of interactions. Thus, many interactions in literature-derived networks do not appear to be functional in the liver cells from which we collected our data. At the same time, CNO identified several new interactions that improved the match of model to data. Although missing from the starting network, these interactions have literature support. Our approach, therefore, represents a means to generate predictive, cell-type-specific models of mammalian signalling from generic protein signalling networks. © 2009 EMBO and Macmillan Publishers Limited. All rights reserved. en
heal.journalName Molecular Systems Biology en
dc.identifier.doi 10.1038/msb.2009.87 en
dc.identifier.volume 5 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής