HEAL DSpace

Distributed evolutionary algorithms with hierarchical evaluation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kampolis, IC en
dc.contributor.author Giannakoglou, KC en
dc.date.accessioned 2014-03-01T01:30:13Z
dc.date.available 2014-03-01T01:30:13Z
dc.date.issued 2009 en
dc.identifier.issn 0305-215X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19503
dc.subject Design optimization en
dc.subject Distributed search en
dc.subject Evolutionary algorithms en
dc.subject Hierarchical search en
dc.subject Metamodels en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Operations Research & Management Science en
dc.subject.other Airfoil design en
dc.subject.other Compressor cascade en
dc.subject.other Computational costs en
dc.subject.other Design optimization en
dc.subject.other Distributed evolutionary algorithms en
dc.subject.other Distributed schemes en
dc.subject.other Distributed search en
dc.subject.other Engineering optimization problems en
dc.subject.other Evaluation models en
dc.subject.other Hierarchical evaluation en
dc.subject.other Hierarchical search en
dc.subject.other High fidelity en
dc.subject.other Meta model en
dc.subject.other Metamodels en
dc.subject.other Surrogate model en
dc.subject.other Airfoils en
dc.subject.other Computational efficiency en
dc.subject.other Cost reduction en
dc.subject.other Optimization en
dc.subject.other Evolutionary algorithms en
dc.title Distributed evolutionary algorithms with hierarchical evaluation en
heal.type journalArticle en
heal.identifier.primary 10.1080/03052150902890072 en
heal.identifier.secondary http://dx.doi.org/10.1080/03052150902890072 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract A distributed evolutionary algorithm is presented that is based on a hierarchy of (fitness or cost function) evaluation passes within each deme and is efficient in solving engineering optimization problems. Starting with non-problem-specific evaluations (using surrogate models or metamodels, trained on previously evaluated individuals) and ending up with high-fidelity problem-specific evaluations, intermediate passes rely on other available lower-fidelity problem-specific evaluations with lower CPU cost per evaluation. The sequential use of evaluation models or metamodels, of different computational cost and modelling accuracy, by screening the generation members to get rid of non-promising individuals, leads to reduced overall computational cost. The distributed scheme is based on loosely coupled demes that exchange regularly their best-so-far individuals. Emphasis is put on the optimal way of coupling distributed and hierarchical search methods. The proposed method is tested on mathematical and compressor cascade airfoil design problems. © 2009 Taylor & Francis. en
heal.publisher TAYLOR & FRANCIS LTD en
heal.journalName Engineering Optimization en
dc.identifier.doi 10.1080/03052150902890072 en
dc.identifier.isi ISI:000274363000003 en
dc.identifier.volume 41 en
dc.identifier.issue 11 en
dc.identifier.spage 1037 en
dc.identifier.epage 1049 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής