dc.contributor.author |
Petraki, DK |
en |
dc.contributor.author |
Anastasopoulos, MP |
en |
dc.contributor.author |
Chen, H-H |
en |
dc.contributor.author |
Cottis, PG |
en |
dc.date.accessioned |
2014-03-01T01:30:13Z |
|
dc.date.available |
2014-03-01T01:30:13Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
1943-068X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19504 |
|
dc.subject |
Bargaining models |
en |
dc.subject |
Call admission control |
en |
dc.subject |
Rain fading |
en |
dc.subject |
Resource allocation |
en |
dc.subject |
Satellite network |
en |
dc.subject.other |
Analytical results |
en |
dc.subject.other |
Bargaining model |
en |
dc.subject.other |
Bargaining models |
en |
dc.subject.other |
Call admission control |
en |
dc.subject.other |
Call admission control algorithm |
en |
dc.subject.other |
Call blocking probabilities |
en |
dc.subject.other |
Delay-sensitive services |
en |
dc.subject.other |
Distributed resource allocation |
en |
dc.subject.other |
Emergency service |
en |
dc.subject.other |
Markov Chain |
en |
dc.subject.other |
Propagation delays |
en |
dc.subject.other |
Rain fading |
en |
dc.subject.other |
Resource allocation schemes |
en |
dc.subject.other |
Satellite channel |
en |
dc.subject.other |
Satellite network |
en |
dc.subject.other |
System throughput |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Blocking probability |
en |
dc.subject.other |
Cellular radio systems |
en |
dc.subject.other |
Markov processes |
en |
dc.subject.other |
Planning |
en |
dc.subject.other |
Quality of service |
en |
dc.subject.other |
Rain |
en |
dc.subject.other |
Resource allocation |
en |
dc.subject.other |
Satellites |
en |
dc.subject.other |
Telecommunication networks |
en |
dc.subject.other |
Game theory |
en |
dc.title |
Distributed resource allocation for delay-sensitive services in satellite networks using game theory |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TCIAIG.2009.2027693 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TCIAIG.2009.2027693 |
en |
heal.identifier.secondary |
5169832 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
In this paper, a resource allocation and call admission control scheme based on game theory for satellite networks operating above 10 GHz is introduced, taking into account the propagation conditions and large propagation delay. The resource allocation scheme based on a bargaining model, which may be completed in a very short time, seems to be suitable for providing emergency services. A distributed call admission control algorithm exploiting the predictability of the satellite channel to guarantee quality of service (QoS) is also presented. According to the suggested scheme, each user unilaterally decides whether to accept a new call and, if all users unanimously agree, the new call is admitted. The performance of the proposed scheme is investigated using Markov chain modeling. Finally, analytical results concerning bounds for the call blocking probability and the system throughput are presented. © 2009 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Computational Intelligence and AI in Games |
en |
dc.identifier.doi |
10.1109/TCIAIG.2009.2027693 |
en |
dc.identifier.isi |
ISI:000208081900004 |
en |
dc.identifier.volume |
1 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
134 |
en |
dc.identifier.epage |
144 |
en |