dc.contributor.author |
Lykourentzou, I |
en |
dc.contributor.author |
Giannoukos, I |
en |
dc.contributor.author |
Nikolopoulos, V |
en |
dc.contributor.author |
Mpardis, G |
en |
dc.contributor.author |
Loumos, V |
en |
dc.date.accessioned |
2014-03-01T01:30:14Z |
|
dc.date.available |
2014-03-01T01:30:14Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0360-1315 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19508 |
|
dc.subject |
Distance education and telelearning |
en |
dc.subject |
Dropout prediction |
en |
dc.subject |
E-learning |
en |
dc.subject |
Machine learning |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Education & Educational Research |
en |
dc.subject.other |
Distance education and telelearning |
en |
dc.subject.other |
Dropout prediction |
en |
dc.subject.other |
Machine learning |
en |
dc.subject.other |
Machine learning techniques |
en |
dc.subject.other |
Prediction methods |
en |
dc.subject.other |
Probabilistic ensemble |
en |
dc.subject.other |
Simplified fuzzy ARTMAP |
en |
dc.subject.other |
Distance education |
en |
dc.subject.other |
Fuzzy neural networks |
en |
dc.subject.other |
Internet |
en |
dc.subject.other |
Learning algorithms |
en |
dc.subject.other |
Multimedia systems |
en |
dc.subject.other |
Robot learning |
en |
dc.subject.other |
Students |
en |
dc.subject.other |
Teaching |
en |
dc.subject.other |
E-learning |
en |
dc.title |
Dropout prediction in e-learning courses through the combination of machine learning techniques |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.compedu.2009.05.010 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.compedu.2009.05.010 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
In this paper, a dropout prediction method for e-learning courses, based on three popular machine learning techniques and detailed student data, is proposed. The machine learning techniques used are feed-forward neural networks, support vector machines and probabilistic ensemble simplified fuzzy ARTMAP. Since a single technique may fail to accurately classify some e-learning students, whereas another may succeed, three decision schemes, which combine in different ways the results of the three machine learning techniques, were also tested. The method was examined in terms of overall accuracy, sensitivity and precision and its results were found to be significantly better than those reported in relevant literature. (C) 2009 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Computers and Education |
en |
dc.identifier.doi |
10.1016/j.compedu.2009.05.010 |
en |
dc.identifier.isi |
ISI:000269069200037 |
en |
dc.identifier.volume |
53 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
950 |
en |
dc.identifier.epage |
965 |
en |