HEAL DSpace

Dropout prediction in e-learning courses through the combination of machine learning techniques

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Lykourentzou, I en
dc.contributor.author Giannoukos, I en
dc.contributor.author Nikolopoulos, V en
dc.contributor.author Mpardis, G en
dc.contributor.author Loumos, V en
dc.date.accessioned 2014-03-01T01:30:14Z
dc.date.available 2014-03-01T01:30:14Z
dc.date.issued 2009 en
dc.identifier.issn 0360-1315 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19508
dc.subject Distance education and telelearning en
dc.subject Dropout prediction en
dc.subject E-learning en
dc.subject Machine learning en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Education & Educational Research en
dc.subject.other Distance education and telelearning en
dc.subject.other Dropout prediction en
dc.subject.other Machine learning en
dc.subject.other Machine learning techniques en
dc.subject.other Prediction methods en
dc.subject.other Probabilistic ensemble en
dc.subject.other Simplified fuzzy ARTMAP en
dc.subject.other Distance education en
dc.subject.other Fuzzy neural networks en
dc.subject.other Internet en
dc.subject.other Learning algorithms en
dc.subject.other Multimedia systems en
dc.subject.other Robot learning en
dc.subject.other Students en
dc.subject.other Teaching en
dc.subject.other E-learning en
dc.title Dropout prediction in e-learning courses through the combination of machine learning techniques en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.compedu.2009.05.010 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.compedu.2009.05.010 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract In this paper, a dropout prediction method for e-learning courses, based on three popular machine learning techniques and detailed student data, is proposed. The machine learning techniques used are feed-forward neural networks, support vector machines and probabilistic ensemble simplified fuzzy ARTMAP. Since a single technique may fail to accurately classify some e-learning students, whereas another may succeed, three decision schemes, which combine in different ways the results of the three machine learning techniques, were also tested. The method was examined in terms of overall accuracy, sensitivity and precision and its results were found to be significantly better than those reported in relevant literature. (C) 2009 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Computers and Education en
dc.identifier.doi 10.1016/j.compedu.2009.05.010 en
dc.identifier.isi ISI:000269069200037 en
dc.identifier.volume 53 en
dc.identifier.issue 3 en
dc.identifier.spage 950 en
dc.identifier.epage 965 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής