HEAL DSpace

Early and dynamic student achievement prediction in E-learning courses using neural networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Lykourentzou, I en
dc.contributor.author Giannoukos, I en
dc.contributor.author Mpardis, G en
dc.contributor.author Nikolopoulos, V en
dc.contributor.author Loumos, V en
dc.date.accessioned 2014-03-01T01:30:15Z
dc.date.available 2014-03-01T01:30:15Z
dc.date.issued 2009 en
dc.identifier.issn 1532-2882 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19519
dc.subject Student Achievement en
dc.subject Neural Network en
dc.subject.classification Computer Science, Information Systems en
dc.subject.classification Information Science & Library Science en
dc.subject.other E-learning en
dc.subject.other Feedforward neural networks en
dc.subject.other Internet en
dc.subject.other Multimedia systems en
dc.subject.other Statistical tests en
dc.subject.other Students en
dc.subject.other Accurate predictions en
dc.subject.other Educational services en
dc.subject.other Input datum en
dc.subject.other Neural-network en
dc.subject.other Prediction methods en
dc.subject.other Student achievements en
dc.subject.other Virtual groups en
dc.subject.other Teaching en
dc.title Early and dynamic student achievement prediction in E-learning courses using neural networks en
heal.type journalArticle en
heal.identifier.primary 10.1002/asi.20970 en
heal.identifier.secondary http://dx.doi.org/10.1002/asi.20970 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract The increasing popularity of e-learning has created a need for accurate student achievement prediction mechanisms, allowing instructors to improve the efficiency of their courses by addressing specific needs of their students at an early stage. In this paper, a student achievement prediction method applied to a 10-week introductory level e-learning course is presented. The proposed method uses multiple feed-forward neural networks to dynamically predict students' final achievement and to cluster them in two virtual groups, according to their performance. Multiple-choice test grades were used as the input data set of the networks. This form of test was preferred for its objectivity. Results showed that accurate prediction is possible at an early stage, more specifically at the third week of the 10-week course. In addition, when students were clustered, low misplacement rates demonstrated the adequacy of the approach. The results of the proposed method were compared against those of linear regression and the neural-network approach was found to be more effective in all prediction stages. The proposed methodology is expected to support instructors in providing better educational services as well as customized assistance according to students' predicted level of performance. en
heal.publisher JOHN WILEY & SONS INC en
heal.journalName Journal of the American Society for Information Science and Technology en
dc.identifier.doi 10.1002/asi.20970 en
dc.identifier.isi ISI:000263136200013 en
dc.identifier.volume 60 en
dc.identifier.issue 2 en
dc.identifier.spage 372 en
dc.identifier.epage 380 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής