dc.contributor.author |
Galanis, KP |
en |
dc.contributor.author |
Papazoglou, VJ |
en |
dc.date.accessioned |
2014-03-01T01:30:17Z |
|
dc.date.available |
2014-03-01T01:30:17Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0039-2103 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19530 |
|
dc.subject |
Aluminium |
en |
dc.subject |
Crack |
en |
dc.subject |
Propagation |
en |
dc.subject |
Stiffener |
en |
dc.subject.classification |
Materials Science, Characterization & Testing |
en |
dc.subject.other |
Aluminum |
en |
dc.subject.other |
Architectural design |
en |
dc.subject.other |
Cracks |
en |
dc.subject.other |
Fracture |
en |
dc.subject.other |
Fracture testing |
en |
dc.subject.other |
Offshore structures |
en |
dc.subject.other |
Plates (structural components) |
en |
dc.subject.other |
Reconstruction (structural) |
en |
dc.subject.other |
Shipbuilding |
en |
dc.subject.other |
Ships |
en |
dc.subject.other |
Thin walled structures |
en |
dc.subject.other |
Aluminium |
en |
dc.subject.other |
Aluminium structures |
en |
dc.subject.other |
Compact tension specimens |
en |
dc.subject.other |
Component testing |
en |
dc.subject.other |
Crack patterns |
en |
dc.subject.other |
Critical areas |
en |
dc.subject.other |
Fracture models |
en |
dc.subject.other |
Large-scale models |
en |
dc.subject.other |
Light-weight materials |
en |
dc.subject.other |
Marine structures |
en |
dc.subject.other |
Material usages |
en |
dc.subject.other |
Propagation |
en |
dc.subject.other |
Ship designers |
en |
dc.subject.other |
Shipbuilding industries |
en |
dc.subject.other |
Stiffened panels |
en |
dc.subject.other |
Stiffened plates |
en |
dc.subject.other |
Stiffener |
en |
dc.subject.other |
Structural response |
en |
dc.subject.other |
Unstiffened plates |
en |
dc.subject.other |
Structural design |
en |
dc.title |
Effect of stiffening configurations on fracture of aluminium structures |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1111/j.1475-1305.2008.00426.x |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1111/j.1475-1305.2008.00426.x |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
Traditionally, marine structures have been designed to resist yielding, buckling and fatigue, but not fracture. This is because existing data regarding fracture on large-scale models are limited. Consequently, adequate methods and procedures to design vessels to resist fracture have not been developed, although the shipbuilding industry is seeking to achieve advanced and more efficient concepts and designs for vessels with improved safety and performance using optimised structural design. The rapidly increasing application of lightweight materials and thin-walled structures in several industries requires fundamental understanding of mechanisms and mechanics of fracture that govern stiffened panels. Therefore, a comprehensive tool consisting of application of advanced fracture models, material calibration, and validation through component testing is provided that will increase the survivability envelope of new vessels. This paper presents the effect of stiffening configurations on fracture of aluminium structures by studying the structural response of various stiffened plates which are compared with unstiffened plates represented by small-scale compact tension (CT) specimens. It is shown that mapping of crack patterns in stiffened plates is feasible and can enable ship designers to evaluate critical areas within a structure with respect to crack initiation, propagation and optimum material usage. © 2009 Blackwell Publishing Ltd. |
en |
heal.publisher |
WILEY-BLACKWELL PUBLISHING, INC |
en |
heal.journalName |
Strain |
en |
dc.identifier.doi |
10.1111/j.1475-1305.2008.00426.x |
en |
dc.identifier.isi |
ISI:000263911200004 |
en |
dc.identifier.volume |
45 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
131 |
en |
dc.identifier.epage |
138 |
en |