HEAL DSpace

Effective implementation of the ε-constraint method in Multi-Objective Mathematical Programming problems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mavrotas, G en
dc.date.accessioned 2014-03-01T01:30:17Z
dc.date.available 2014-03-01T01:30:17Z
dc.date.issued 2009 en
dc.identifier.issn 0096-3003 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19533
dc.subject ε-Constraint method en
dc.subject GAMS en
dc.subject Multi-Objective Programming en
dc.subject.classification Mathematics, Applied en
dc.subject.other Apriori en
dc.subject.other Classification , en
dc.subject.other Computational effort en
dc.subject.other Constraint methods en
dc.subject.other Decision makers en
dc.subject.other Final decision en
dc.subject.other GAMS en
dc.subject.other Generation method en
dc.subject.other Interactive approach en
dc.subject.other Mathematical programming problem en
dc.subject.other Modelling language en
dc.subject.other Multi objective en
dc.subject.other Multi-Objective Programming en
dc.subject.other Pareto optimal solutions en
dc.subject.other Pareto set en
dc.subject.other Posteriori en
dc.subject.other Whole process en
dc.subject.other Multiobjective optimization en
dc.subject.other Optimal systems en
dc.subject.other Pareto principle en
dc.subject.other Mathematical programming en
dc.title Effective implementation of the ε-constraint method in Multi-Objective Mathematical Programming problems en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.amc.2009.03.037 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.amc.2009.03.037 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract As indicated by the most widely accepted classification, the Multi-Objective Mathematical Programming (MOMP) methods can be classified as a priori, interactive and a posteriori, according to the decision stage in which the decision maker expresses his/her preferences. Although the a priori methods are the most popular, the interactive and the a posteriori methods convey much more information to the decision maker. Especially, the a posteriori (or generation) methods give the whole picture (i.e. the Pareto set) to the decision maker, before his/her final choice, reinforcing thus, his/her confidence to the final decision. However, the generation methods are the less popular due to their computational effort and the lack of widely available software. The present work is an effort to effectively implement the epsilon-constraint method for producing the Pareto optimal solutions in a MOMP. We propose a novel version of the method (augmented epsilon-constraint method - AUGMECON) that avoids the production of weakly Pareto optimal solutions and accelerates the whole process by avoiding redundant iterations. The method AUGMECON has been implemented in GAMS, a widely used modelling language, and has already been used in some applications. Finally, an interactive approach that is based on AUGMECON and eventually results in the most preferred Pareto optimal solution is also proposed in the paper. (C) 2009 Elsevier Inc. All rights reserved. en
heal.publisher ELSEVIER SCIENCE INC en
heal.journalName Applied Mathematics and Computation en
dc.identifier.doi 10.1016/j.amc.2009.03.037 en
dc.identifier.isi ISI:000266271700020 en
dc.identifier.volume 213 en
dc.identifier.issue 2 en
dc.identifier.spage 455 en
dc.identifier.epage 465 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής