HEAL DSpace

Efficiency of targeted energy transfers in coupled nonlinear oscillators associated with 1:1 resonance captures: Part II, analytical study

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sapsis, TP en
dc.contributor.author Vakakis, AF en
dc.contributor.author Gendelman, OV en
dc.contributor.author Bergman, LA en
dc.contributor.author Kerschen, G en
dc.contributor.author Quinn, DD en
dc.date.accessioned 2014-03-01T01:30:18Z
dc.date.available 2014-03-01T01:30:18Z
dc.date.issued 2009 en
dc.identifier.issn 0022-460X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19542
dc.subject.classification Acoustics en
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Mechanics en
dc.subject.other Analytical predictions en
dc.subject.other Analytical treatment en
dc.subject.other Broadband energy en
dc.subject.other Characteristic time en
dc.subject.other Damped systems en
dc.subject.other Energy transfer efficiency en
dc.subject.other Hamiltonian dynamics en
dc.subject.other Hamiltonian systems en
dc.subject.other Homoclinic orbits en
dc.subject.other Initial energy en
dc.subject.other Linear oscillator en
dc.subject.other Non-linear oscillators en
dc.subject.other Nonlinear energy sink en
dc.subject.other Parameter regions en
dc.subject.other Quasi-periodic en
dc.subject.other Resonance capture en
dc.subject.other Strongly nonlinear en
dc.subject.other Time-scale en
dc.subject.other Topological structure en
dc.subject.other Transient resonance en
dc.subject.other Transient response en
dc.subject.other Two-degree-of-freedom en
dc.subject.other Viscous damping en
dc.subject.other Biped locomotion en
dc.subject.other Dynamics en
dc.subject.other Energy transfer en
dc.subject.other Equations of motion en
dc.subject.other Hamiltonians en
dc.subject.other Meats en
dc.subject.other Nonlinear control systems en
dc.subject.other Orbits en
dc.subject.other Oscillators (electronic) en
dc.subject.other Oscillators (mechanical) en
dc.subject.other Resonance en
dc.subject.other Structural optimization en
dc.subject.other Nonlinear equations en
dc.title Efficiency of targeted energy transfers in coupled nonlinear oscillators associated with 1:1 resonance captures: Part II, analytical study en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.jsv.2009.03.004 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.jsv.2009.03.004 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract We study targeted energy transfer in a two degree-of-freedom damped system under the condition of 1:1 transient resonance capture. The system consists of a linear oscillator strongly coupled to an essentially nonlinear attachment or nonlinear energy sink. In a companion paper [Quinn et al., Efficiency of targeted energy transfers in coupled nonlinear oscillators associated with 1:1 resonance captures: part I, Journal of Sound and Vibration 311 (2008) 1228-1248] we studied the underlying structure of the Hamiltonian dynamics of this system, and showed that for sufficiently small values of viscous damping, nonlinear damped transitions are strongly influenced by the underlying topological structure of periodic and quasiperiodic orbits of the Hamiltonian system. In this work direct analytical treatment of the governing strongly nonlinear damped equations of motion is performed through slow/fast partitions of the transient responses, in order to investigate analytically the parameter region of optimal targeted energy transfer. To this end, we determine the characteristic time scales of the dynamics that influence the capacity of the nonlinear attachment to passively absorb and locally dissipate broadband energy from the linear oscillator. Then, we prove that optimal targeted energy transfer is realized for initial energies close to the neighborhood of a homoclinic orbit of the underlying Hamiltonian system. We study analytically transient orbits resulting as perturbations of the homoclinic orbit in the weakly damped system, and show that this yields an additional slow-time scale in the averaged dynamics, and leads to optimal targeted energy transfer from the linear oscillator to the nonlinear energy sink in a single ""super-slow"" half-cycle. We show that at higher energies, this ""super-slow"" half-cycle is replaced by strong nonlinear beats, which lead to significant but suboptimal targeted energy transfer efficiency. Finally, we investigate numerically targeted energy transfer efficiency in this system over a wide range of system parameters and verify the analytical predictions. © 2009 Elsevier Ltd. All rights reserved. en
heal.publisher ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD en
heal.journalName Journal of Sound and Vibration en
dc.identifier.doi 10.1016/j.jsv.2009.03.004 en
dc.identifier.isi ISI:000267679800019 en
dc.identifier.volume 325 en
dc.identifier.issue 1-2 en
dc.identifier.spage 297 en
dc.identifier.epage 320 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής