dc.contributor.author |
Demestichas, P |
en |
dc.contributor.author |
Katidiotis, A |
en |
dc.contributor.author |
Tsagkaris, KA |
en |
dc.contributor.author |
Adamopoulou, EF |
en |
dc.contributor.author |
Demestichas, KP |
en |
dc.date.accessioned |
2014-03-01T01:30:21Z |
|
dc.date.available |
2014-03-01T01:30:21Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0929-6212 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19560 |
|
dc.subject |
Bayesian networks |
en |
dc.subject |
Channel-State Information (CSI) |
en |
dc.subject |
Cognitive networks |
en |
dc.subject |
Machine learning |
en |
dc.subject.classification |
Telecommunications |
en |
dc.subject.other |
Account calculation |
en |
dc.subject.other |
Bit rates |
en |
dc.subject.other |
Cognitive network |
en |
dc.subject.other |
Cognitive radio |
en |
dc.subject.other |
Machine-learning |
en |
dc.subject.other |
Potential applications |
en |
dc.subject.other |
Channel capacity |
en |
dc.subject.other |
Channel state information |
en |
dc.subject.other |
Cognitive systems |
en |
dc.subject.other |
Communication channels (information theory) |
en |
dc.subject.other |
Distributed parameter networks |
en |
dc.subject.other |
Estimation |
en |
dc.subject.other |
Inference engines |
en |
dc.subject.other |
Intelligent networks |
en |
dc.subject.other |
Learning systems |
en |
dc.subject.other |
Radio |
en |
dc.subject.other |
Radio broadcasting |
en |
dc.subject.other |
Radio systems |
en |
dc.subject.other |
Bayesian networks |
en |
dc.title |
Enhancing channel estimation in cognitive radio systems by means of Bayesian networks |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s11277-008-9559-1 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s11277-008-9559-1 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
This paper proposes enhancements to the channel(-state) estimation phase of a cognitive radio system. Cognitive radio devices have the ability to dynamically select their operating configurations, based on environment aspects, goals, profiles, preferences etc. The proposed method aims at evaluating the various candidate configurations that a cognitive transmitter may operate in, by associating a capability e.g., achievable bit-rate, with each of these configurations. It takes into account calculations of channel capacity provided by channel-state estimation information (CSI) and the sensed environment, and at the same time increases the certainty about the configuration evaluations by considering past experience and knowledge through the use of Bayesian networks. Results from comprehensive scenarios showthe impact of our method on the behaviour of cognitive radio systems,whereas potential application and future work are identified. © 2008 Springer Science+Business Media, LLC. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Wireless Personal Communications |
en |
dc.identifier.doi |
10.1007/s11277-008-9559-1 |
en |
dc.identifier.isi |
ISI:000263547400008 |
en |
dc.identifier.volume |
49 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
87 |
en |
dc.identifier.epage |
105 |
en |