HEAL DSpace

Enhancing predictions in signalized arterials with information on short-term traffic flow dynamics

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Vlahogianni, EI en
dc.date.accessioned 2014-03-01T01:30:21Z
dc.date.available 2014-03-01T01:30:21Z
dc.date.issued 2009 en
dc.identifier.issn 1547-2450 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19561
dc.subject Neural Networks en
dc.subject Pattern-based Prediction en
dc.subject Short-term Prediction en
dc.subject Traffic Flow en
dc.subject.classification Transportation Science & Technology en
dc.subject.other Intelligent transportation systems en
dc.subject.other Pattern-based Prediction en
dc.subject.other Prediction schemes en
dc.subject.other Prediction techniques en
dc.subject.other Short-term Prediction en
dc.subject.other Short-term traffic flow en
dc.subject.other Traffic dynamics en
dc.subject.other Traffic Flow en
dc.subject.other Forecasting en
dc.subject.other Intelligent vehicle highway systems en
dc.subject.other Neural networks en
dc.subject.other Traffic surveys en
dc.subject.other Vehicle locating systems en
dc.subject.other Traffic control en
dc.subject.other artificial neural network en
dc.subject.other information system en
dc.subject.other prediction en
dc.subject.other traffic congestion en
dc.subject.other traffic management en
dc.title Enhancing predictions in signalized arterials with information on short-term traffic flow dynamics en
heal.type journalArticle en
heal.identifier.primary 10.1080/15472450902858384 en
heal.identifier.secondary http://dx.doi.org/10.1080/15472450902858384 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract Short-term traffic flow predictions are an essential part of intelligent transportation systems. Previous research underlines the difficulty in systematically assessing the predictability of traffic flow near capacity or during congested conditions. In this article a neural network prediction scheme is proposed that is consistent with the pattern-based evolution of traffic flow and has the capability of exploiting past information to acquire knowledge on the traffic dynamics in order to enhance predictability. Findings indicate that pattern-based predictions are more accuratein the traffic flow regimes consideredwhen compared to other local and global prediction techniques that operate under the time-series consideration. The pattern-based prediction scheme was also found to outperform the other methods tested in the knowledge of the anticipated traffic flow state in all traffic flow conditions considered. en
heal.publisher TAYLOR & FRANCIS INC en
heal.journalName Journal of Intelligent Transportation Systems: Technology, Planning, and Operations en
dc.identifier.doi 10.1080/15472450902858384 en
dc.identifier.isi ISI:000265646400002 en
dc.identifier.volume 13 en
dc.identifier.issue 2 en
dc.identifier.spage 73 en
dc.identifier.epage 84 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής