HEAL DSpace

Estimating airborne pollutant concentrations in vegetated urban sites using statistical models with microclimate and urban geometry parameters as predictor variables: A case study in the city of Athens Greece

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsiros, IX en
dc.contributor.author Dimopoulos, IF en
dc.contributor.author Chronopoulos, KI en
dc.contributor.author Chronopoulos, G en
dc.date.accessioned 2014-03-01T01:30:25Z
dc.date.available 2014-03-01T01:30:25Z
dc.date.issued 2009 en
dc.identifier.issn 1093-4529 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19569
dc.subject Artificial neural networks en
dc.subject Environmental management en
dc.subject Estimation en
dc.subject Model en
dc.subject Prediction en
dc.subject Regression tree model en
dc.subject Urban green en
dc.subject Urban microclimate en
dc.subject Urban vegetation en
dc.subject.classification Engineering, Environmental en
dc.subject.classification Environmental Sciences en
dc.subject.other cadmium en
dc.subject.other air pollutant en
dc.subject.other article en
dc.subject.other artificial neural network en
dc.subject.other chemistry en
dc.subject.other city en
dc.subject.other climate en
dc.subject.other Cynodon en
dc.subject.other environmental monitoring en
dc.subject.other Greece en
dc.subject.other methodology en
dc.subject.other statistical model en
dc.subject.other Air Pollutants en
dc.subject.other Cadmium en
dc.subject.other Cities en
dc.subject.other Climate en
dc.subject.other Cynodon en
dc.subject.other Environmental Monitoring en
dc.subject.other Greece en
dc.subject.other Linear Models en
dc.subject.other Models, Statistical en
dc.subject.other Neural Networks (Computer) en
dc.subject.other Adjacent buildings en
dc.subject.other Airborne pollutants en
dc.subject.other Artificial neural network models en
dc.subject.other Deposition models en
dc.subject.other Interaction term en
dc.subject.other Mean density en
dc.subject.other Non-linear model en
dc.subject.other Non-linear relationships en
dc.subject.other Pollutant concentration en
dc.subject.other Predictor variables en
dc.subject.other Regression tree models en
dc.subject.other Statistical models en
dc.subject.other Tree regression en
dc.subject.other Urban areas en
dc.subject.other Urban geometry en
dc.subject.other Urban green en
dc.subject.other Urban landscape en
dc.subject.other Urban microclimate en
dc.subject.other Urban site en
dc.subject.other Urban vegetation en
dc.subject.other Wind conditions en
dc.subject.other Cadmium en
dc.subject.other Computer simulation en
dc.subject.other Environmental management en
dc.subject.other Estimation en
dc.subject.other Forecasting en
dc.subject.other Forestry en
dc.subject.other Mathematical models en
dc.subject.other Models en
dc.subject.other Neural networks en
dc.subject.other Vegetation en
dc.title Estimating airborne pollutant concentrations in vegetated urban sites using statistical models with microclimate and urban geometry parameters as predictor variables: A case study in the city of Athens Greece en
heal.type journalArticle en
heal.identifier.primary 10.1080/10934520903263256 en
heal.identifier.secondary http://dx.doi.org/10.1080/10934520903263256 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract The present study demonstrates the efficiency of applying statistical models to estimate airborne pollutant concentrations in urban vegetation by using as predictor variables readily available or easily accessible data. Results revealed that airborne cadmium concentrations in vegetation showed a predictable response to wind conditions and to various urban landscape features such as the distance between the vegetation and the adjacent street, the mean height of the adjacent buildings, the mean density of vegetation between vegetation and the adjacent street and the mean height of vegetation. An artificial neural network (ANN) model was found to have superiority in terms of accuracy with an R2 value on the order of 0.9. The lowest R2 value (on the order of 0.7) was associated with the linear model (SMLR model). The linear model with interactions (SMLRI model) and the tree regression (RTM) model gave similar results in terms of accuracy with R2 values on the order of 0.8. The improvement of the results with the use of the non-linear models (RTM and ANN) and the inclusion of interaction terms in the SMLRI model implied the nonlinear relationships of pollutant concentrations to the selected predictors and showed the importance of the interactions between the various predictor variables. Despite the limitations of the models, some of them appear to be promising alternatives to multimedia-based simulation modeling approaches in urban areas with vegetation, where the application of typical deposition models is sometimes limited. Copyright © Taylor & Francis Group, LLC. en
heal.publisher TAYLOR & FRANCIS INC en
heal.journalName Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering en
dc.identifier.doi 10.1080/10934520903263256 en
dc.identifier.isi ISI:000271611300002 en
dc.identifier.volume 44 en
dc.identifier.issue 14 en
dc.identifier.spage 1496 en
dc.identifier.epage 1502 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής