HEAL DSpace

Estimation of behavioral user state based on eye gaze and head pose-application in an e-learning environment

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Asteriadis, S en
dc.contributor.author Tzouveli, P en
dc.contributor.author Karpouzis, K en
dc.contributor.author Kollias, S en
dc.date.accessioned 2014-03-01T01:30:25Z
dc.date.available 2014-03-01T01:30:25Z
dc.date.issued 2009 en
dc.identifier.issn 1380-7501 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19570
dc.subject Eye gaze en
dc.subject Facial feature detection and tracking en
dc.subject Head pose en
dc.subject User attention estimation en
dc.subject.classification Computer Science, Information Systems en
dc.subject.classification Computer Science, Software Engineering en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Eye movements en
dc.subject.other Feedback en
dc.subject.other Image recording en
dc.subject.other Image segmentation en
dc.subject.other Internet en
dc.subject.other Multimedia systems en
dc.subject.other State feedback en
dc.subject.other Word processing en
dc.subject.other Behavioral states en
dc.subject.other E - learnings en
dc.subject.other Electronic documents en
dc.subject.other Eye and hands en
dc.subject.other Eye gaze en
dc.subject.other Facial feature detection and tracking en
dc.subject.other Fuzzy networks en
dc.subject.other Head pose en
dc.subject.other Level of interests en
dc.subject.other Reading performances en
dc.subject.other State based en
dc.subject.other Testbed en
dc.subject.other User attention estimation en
dc.subject.other User feedbacks en
dc.subject.other User profiles en
dc.subject.other WEB cameras en
dc.subject.other E-learning en
dc.title Estimation of behavioral user state based on eye gaze and head pose-application in an e-learning environment en
heal.type journalArticle en
heal.identifier.primary 10.1007/s11042-008-0240-1 en
heal.identifier.secondary http://dx.doi.org/10.1007/s11042-008-0240-1 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract Most e-learning environments which utilize user feedback or profiles, collect such information based on questionnaires, resulting very often in incomplete answers, and sometimes deliberate misleading input. In this work, we present a mechanism which compiles feedback related to the behavioral state of the user (e.g. level of interest) in the context of reading an electronic document; this is achieved using a non-intrusive scheme, which uses a simple web camera to detect and track the head, eye and hand movements and provides an estimation of the level of interest and engagement with the use of a neuro-fuzzy network initialized from evidence from the idea of Theory of Mind and trained from expert-annotated data. The user does not need to interact with the proposed system, and can act as if she was not monitored at all. The proposed scheme is tested in an e-learning environment, in order to adapt the presentation of the content to the user profile and current behavioral state. Experiments show that the proposed system detects reading- and attention-related user states very effectively, in a testbed where children's reading performance is tracked. © 2008 Springer Science+Business Media, LLC. en
heal.publisher SPRINGER en
heal.journalName Multimedia Tools and Applications en
dc.identifier.doi 10.1007/s11042-008-0240-1 en
dc.identifier.isi ISI:000262506300006 en
dc.identifier.volume 41 en
dc.identifier.issue 3 en
dc.identifier.spage 469 en
dc.identifier.epage 493 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής