dc.contributor.author |
Xiros, C |
en |
dc.contributor.author |
Katapodis, P |
en |
dc.contributor.author |
Christakopoulos, P |
en |
dc.date.accessioned |
2014-03-01T01:30:26Z |
|
dc.date.available |
2014-03-01T01:30:26Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0960-8524 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19576 |
|
dc.subject |
Enzymatic hydrolysis |
en |
dc.subject |
Fusarium oxysporum cellulolytic system |
en |
dc.subject |
Hydrothermally treated wheat straw |
en |
dc.subject |
Kinetic model |
en |
dc.subject.classification |
Agricultural Engineering |
en |
dc.subject.classification |
Biotechnology & Applied Microbiology |
en |
dc.subject.classification |
Energy & Fuels |
en |
dc.subject.other |
Carbon source |
en |
dc.subject.other |
Corn cob |
en |
dc.subject.other |
Dynamic adsorption |
en |
dc.subject.other |
Experimental data |
en |
dc.subject.other |
Fusarium oxysporum |
en |
dc.subject.other |
Fusarium oxysporum cellulolytic system |
en |
dc.subject.other |
Hydrothermally treated |
en |
dc.subject.other |
Hydrothermally treated wheat straw |
en |
dc.subject.other |
In-situ |
en |
dc.subject.other |
Kinetic model |
en |
dc.subject.other |
Kinetic models |
en |
dc.subject.other |
Product inhibition |
en |
dc.subject.other |
Reducing ends |
en |
dc.subject.other |
Spent grains |
en |
dc.subject.other |
Submerged condition |
en |
dc.subject.other |
Wheat straws |
en |
dc.subject.other |
Adsorption |
en |
dc.subject.other |
Kinetic theory |
en |
dc.subject.other |
Reaction rates |
en |
dc.subject.other |
Saccharification |
en |
dc.subject.other |
Sugar (sucrose) |
en |
dc.subject.other |
Sugars |
en |
dc.subject.other |
Enzymatic hydrolysis |
en |
dc.subject.other |
beta glucosidase |
en |
dc.subject.other |
carbon |
en |
dc.subject.other |
cellulose |
en |
dc.subject.other |
hemicellulose |
en |
dc.subject.other |
lignin |
en |
dc.subject.other |
adsorption |
en |
dc.subject.other |
bioreactor |
en |
dc.subject.other |
enzyme activity |
en |
dc.subject.other |
experimental study |
en |
dc.subject.other |
hydrolysis |
en |
dc.subject.other |
modeling |
en |
dc.subject.other |
reaction kinetics |
en |
dc.subject.other |
adsorption |
en |
dc.subject.other |
article |
en |
dc.subject.other |
bioreactor |
en |
dc.subject.other |
biotransformation |
en |
dc.subject.other |
carbon source |
en |
dc.subject.other |
controlled study |
en |
dc.subject.other |
corn |
en |
dc.subject.other |
enzyme assay |
en |
dc.subject.other |
enzyme synthesis |
en |
dc.subject.other |
fungus culture |
en |
dc.subject.other |
Fusarium oxysporum |
en |
dc.subject.other |
hydrolysis |
en |
dc.subject.other |
mathematical model |
en |
dc.subject.other |
nonhuman |
en |
dc.subject.other |
pH |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
saccharification |
en |
dc.subject.other |
wheat |
en |
dc.subject.other |
Biomass |
en |
dc.subject.other |
Bioreactors |
en |
dc.subject.other |
Cellulose |
en |
dc.subject.other |
Fusarium |
en |
dc.subject.other |
Glucose |
en |
dc.subject.other |
Hydrogen-Ion Concentration |
en |
dc.subject.other |
Hydrolysis |
en |
dc.subject.other |
Kinetics |
en |
dc.subject.other |
Models, Biological |
en |
dc.subject.other |
Serum Albumin, Bovine |
en |
dc.subject.other |
Surface-Active Agents |
en |
dc.subject.other |
Temperature |
en |
dc.subject.other |
Triticum |
en |
dc.subject.other |
Water |
en |
dc.subject.other |
Fusarium oxysporum |
en |
dc.subject.other |
Triticum aestivum |
en |
dc.subject.other |
Zea mays |
en |
dc.title |
Evaluation of Fusarium oxysporum cellulolytic system for an efficient hydrolysis of hydrothermally treated wheat straw |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.biortech.2009.05.065 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.biortech.2009.05.065 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
The crude multienzyme extract produced by Fusarium oxysporum cultivated under submerged conditions in 20 L bioreactor using brewers spent grain and corn cobs in a ratio 2:1 as the carbon source was evaluated with regard to an efficient saccharification of hydrothermally treated wheat straw. Several factors concerning the obtained hydrolysis yield and reaction rate were investigated. The takeout of product sugars (in situ) was effective at reducing end-product inhibition and lead to a bioconversion about 80% of the theoretical. A kinetic model incorporating dynamic adsorption, enzymatic hydrolysis, and product inhibition was developed. The model predicted very satisfactorily the experimental data. (C) 2009 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Bioresource Technology |
en |
dc.identifier.doi |
10.1016/j.biortech.2009.05.065 |
en |
dc.identifier.isi |
ISI:000268742800067 |
en |
dc.identifier.volume |
100 |
en |
dc.identifier.issue |
21 |
en |
dc.identifier.spage |
5362 |
en |
dc.identifier.epage |
5365 |
en |