dc.contributor.author |
Gasinski, L |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:30:27Z |
|
dc.date.available |
2014-03-01T01:30:27Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0026-9255 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19587 |
|
dc.subject |
Local linking |
en |
dc.subject |
Locally Lipschitz potential |
en |
dc.subject |
P-Laplacian |
en |
dc.subject |
Periodic system |
en |
dc.subject |
Reduction method |
en |
dc.subject |
Second deformation lemma |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
EQUATIONS |
en |
dc.subject.other |
OPERATORS |
en |
dc.subject.other |
POINTS |
en |
dc.title |
Existence and multiplicity of solutions for second order periodic systems with the p-Laplacian and a nonsmooth potential |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00605-008-0041-7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00605-008-0041-7 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
In this paper we study nonlinear periodic systems driven by the ordinary p-Laplacian with a nonsmooth potential. We prove an existence theorem using a nonsmooth variant of the reduction method. We also prove two multiplicity results. The first is for scalar problems and uses the nonsmooth second deformation lemma. The second is for systems and it is based on the nonsmooth local linking theorem. © Springer-Verlag 2008. |
en |
heal.publisher |
SPRINGER WIEN |
en |
heal.journalName |
Monatshefte fur Mathematik |
en |
dc.identifier.doi |
10.1007/s00605-008-0041-7 |
en |
dc.identifier.isi |
ISI:000269918800002 |
en |
dc.identifier.volume |
158 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
121 |
en |
dc.identifier.epage |
150 |
en |