dc.contributor.author |
Filippakis, M |
en |
dc.contributor.author |
Kristaly, A |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:30:27Z |
|
dc.date.available |
2014-03-01T01:30:27Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
1078-0947 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19589 |
|
dc.subject |
Multiple solutions |
en |
dc.subject |
Nodal solution |
en |
dc.subject |
Non-smooth critical point theory |
en |
dc.subject |
p-laplacian |
en |
dc.subject |
Positive solution |
en |
dc.subject |
Upper-lower solutions |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
BOUNDARY-VALUE-PROBLEMS |
en |
dc.subject.other |
LINEAR ELLIPTIC-EQUATIONS |
en |
dc.subject.other |
MULTIPLE SOLUTIONS |
en |
dc.subject.other |
POSITIVE SOLUTIONS |
en |
dc.subject.other |
CONVEX NONLINEARITIES |
en |
dc.subject.other |
EIGENVALUE PROBLEMS |
en |
dc.subject.other |
DIRICHLET PROBLEMS |
en |
dc.subject.other |
LOCAL MINIMIZERS |
en |
dc.subject.other |
FUCIK SPECTRUM |
en |
dc.subject.other |
RESONANCE |
en |
dc.title |
Existence of five nonzero solutions with exact sign for A p-laplacian equation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.3934/dcds.2009.24.405 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.3934/dcds.2009.24.405 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
We consider nonlinear elliptic problems driven by the p-Laplacian with a nonsmooth potential depending on a parameter lambda > 0. The main result guarantees the existence of two positive, two negative and a nodal (sign-changing) solution for the studied problem whenever lambda belongs to a small interval (0, lambda*) and p >= 2. We do not impose any symmetry hypothesis on the nonlinear potential. The constant-sign solutions are obtained by using variational techniques based on nonsmooth critical point theory (minimization argument, Mountain Pass theorem, and a Brezis-Nirenberg type result for C-1-minimizers), while the nodal solution is constructed by an upper-lower solutions argument combined with the Zorn lemma and a nonsmooth second deformation theorem. |
en |
heal.publisher |
AMER INST MATHEMATICAL SCIENCES |
en |
heal.journalName |
Discrete and Continuous Dynamical Systems |
en |
dc.identifier.doi |
10.3934/dcds.2009.24.405 |
en |
dc.identifier.isi |
ISI:000265190500008 |
en |
dc.identifier.volume |
24 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
405 |
en |
dc.identifier.epage |
440 |
en |