dc.contributor.author |
Aizicovici, S |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.contributor.author |
Staicu, V |
en |
dc.date.accessioned |
2014-03-01T01:30:27Z |
|
dc.date.available |
2014-03-01T01:30:27Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0373-3114 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19590 |
|
dc.subject |
Constant sign solutions |
en |
dc.subject |
Critical groups |
en |
dc.subject |
Linking theorem |
en |
dc.subject |
Neumann problem |
en |
dc.subject |
Nodal solutions |
en |
dc.subject |
p-Laplacian |
en |
dc.subject |
Second deformation theorem |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
LINEAR ELLIPTIC-EQUATIONS |
en |
dc.subject.other |
P-LAPLACIAN |
en |
dc.subject.other |
EIGENVALUE PROBLEMS |
en |
dc.subject.other |
LOCAL MINIMIZERS |
en |
dc.subject.other |
FUNCTIONALS |
en |
dc.subject.other |
RESONANCE |
en |
dc.subject.other |
SOBOLEV |
en |
dc.subject.other |
THEOREM |
en |
dc.title |
Existence of multiple solutions with precise sign information for superlinear Neumann problems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10231-009-0096-7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10231-009-0096-7 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
We consider a nonlinear Neumann problem driven by the p-Laplacian differential operator and having a p-superlinear nonlinearity. Using truncation techniques combined with the method of upper-lower solutions and variational arguments based on critical point theory, we prove the existence of five nontrivial smooth solutions, two positive, two negative and one nodal. For the semilinear (i.e., p = 2) problem, using critical groups we produce a second nodal solution. © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag 2009. |
en |
heal.publisher |
SPRINGER HEIDELBERG |
en |
heal.journalName |
Annali di Matematica Pura ed Applicata |
en |
dc.identifier.doi |
10.1007/s10231-009-0096-7 |
en |
dc.identifier.isi |
ISI:000269996900009 |
en |
dc.identifier.volume |
188 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
679 |
en |
dc.identifier.epage |
719 |
en |