HEAL DSpace

Exploiting semantic proximities for content search over p2p networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Doulamis, ND en
dc.contributor.author Karamolegkos, PN en
dc.contributor.author Doulamis, A en
dc.contributor.author Nikolakopoulos, I en
dc.date.accessioned 2014-03-01T01:30:29Z
dc.date.available 2014-03-01T01:30:29Z
dc.date.issued 2009 en
dc.identifier.issn 0140-3664 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19598
dc.subject Clustering en
dc.subject Content search en
dc.subject Peer-to-peer en
dc.subject.classification Computer Science, Information Systems en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.classification Telecommunications en
dc.subject.other Client server computer systems en
dc.subject.other Semantics en
dc.subject.other Average numbers en
dc.subject.other Clustering en
dc.subject.other Content search en
dc.subject.other Dynamic algorithms en
dc.subject.other Eigen decompositions en
dc.subject.other matrixes en
dc.subject.other P2p networks en
dc.subject.other Peer networks en
dc.subject.other Peer nodes en
dc.subject.other Peer-to-peer en
dc.subject.other Peer-to-peer applications en
dc.subject.other Practical issues en
dc.subject.other Search techniques en
dc.subject.other Semantic partitioning en
dc.subject.other Spectral clustering en
dc.subject.other Information theory en
dc.title Exploiting semantic proximities for content search over p2p networks en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.comcom.2008.12.005 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.comcom.2008.12.005 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract In this paper, we address the issue, Of Content search over peer-to peer networks. We use the Concept Of semantic proximity that exploits the commonalities Of interest exhibited among peer user's so as to decompose the net,work into semantic clusters. We initially define search entropy, as a metric indicating the average number of packets required to locate the requested content. Then, spectral clustering is used to organize the peer nodes into semantic clusters so that (a) the probability that a node locates content within its own cluster is maximized, While simultaneously: (b) the respective probability of finding this Content outside this cluster is minimized. The proposed semantic partitioning algorithm is then extended Into a hierarchical two-tier scheme, in which practical issues arising for the deployment of or peer-to-peer (p2p) application call be more easily addressed. After, the system has been initialized, a dynamic algorithm places new users that the p2p network into appropriately selected clusters and also handles peer departures without the need for matrix eigen decomposition process which is necessary for the assessment of the initial static partitioning,. Our experimental results Validate that (a) our static partitioning outperforms traditional and novel search techniques and (b) our dynamic algorithm is able to efficiently track the system's progression maintaining file search entropy close to the initially assessed levels. (C) 2008 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Computer Communications en
dc.identifier.doi 10.1016/j.comcom.2008.12.005 en
dc.identifier.isi ISI:000264910700005 en
dc.identifier.volume 32 en
dc.identifier.issue 5 en
dc.identifier.spage 814 en
dc.identifier.epage 827 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής