dc.contributor.author |
Doulamis, ND |
en |
dc.contributor.author |
Karamolegkos, PN |
en |
dc.contributor.author |
Doulamis, A |
en |
dc.contributor.author |
Nikolakopoulos, I |
en |
dc.date.accessioned |
2014-03-01T01:30:29Z |
|
dc.date.available |
2014-03-01T01:30:29Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0140-3664 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19598 |
|
dc.subject |
Clustering |
en |
dc.subject |
Content search |
en |
dc.subject |
Peer-to-peer |
en |
dc.subject.classification |
Computer Science, Information Systems |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Telecommunications |
en |
dc.subject.other |
Client server computer systems |
en |
dc.subject.other |
Semantics |
en |
dc.subject.other |
Average numbers |
en |
dc.subject.other |
Clustering |
en |
dc.subject.other |
Content search |
en |
dc.subject.other |
Dynamic algorithms |
en |
dc.subject.other |
Eigen decompositions |
en |
dc.subject.other |
matrixes |
en |
dc.subject.other |
P2p networks |
en |
dc.subject.other |
Peer networks |
en |
dc.subject.other |
Peer nodes |
en |
dc.subject.other |
Peer-to-peer |
en |
dc.subject.other |
Peer-to-peer applications |
en |
dc.subject.other |
Practical issues |
en |
dc.subject.other |
Search techniques |
en |
dc.subject.other |
Semantic partitioning |
en |
dc.subject.other |
Spectral clustering |
en |
dc.subject.other |
Information theory |
en |
dc.title |
Exploiting semantic proximities for content search over p2p networks |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.comcom.2008.12.005 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.comcom.2008.12.005 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
In this paper, we address the issue, Of Content search over peer-to peer networks. We use the Concept Of semantic proximity that exploits the commonalities Of interest exhibited among peer user's so as to decompose the net,work into semantic clusters. We initially define search entropy, as a metric indicating the average number of packets required to locate the requested content. Then, spectral clustering is used to organize the peer nodes into semantic clusters so that (a) the probability that a node locates content within its own cluster is maximized, While simultaneously: (b) the respective probability of finding this Content outside this cluster is minimized. The proposed semantic partitioning algorithm is then extended Into a hierarchical two-tier scheme, in which practical issues arising for the deployment of or peer-to-peer (p2p) application call be more easily addressed. After, the system has been initialized, a dynamic algorithm places new users that the p2p network into appropriately selected clusters and also handles peer departures without the need for matrix eigen decomposition process which is necessary for the assessment of the initial static partitioning,. Our experimental results Validate that (a) our static partitioning outperforms traditional and novel search techniques and (b) our dynamic algorithm is able to efficiently track the system's progression maintaining file search entropy close to the initially assessed levels. (C) 2008 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Computer Communications |
en |
dc.identifier.doi |
10.1016/j.comcom.2008.12.005 |
en |
dc.identifier.isi |
ISI:000264910700005 |
en |
dc.identifier.volume |
32 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
814 |
en |
dc.identifier.epage |
827 |
en |