HEAL DSpace

Factor analysis latent subspace modeling and robust fuzzy clustering using t-distributions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chatzis, S en
dc.contributor.author Varvarigou, T en
dc.date.accessioned 2014-03-01T01:30:38Z
dc.date.available 2014-03-01T01:30:38Z
dc.date.issued 2009 en
dc.identifier.issn 1063-6706 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19607
dc.subject Factor analysis en
dc.subject Fuzzy clustering en
dc.subject Kullback-Leibler divergence en
dc.subject Local subspace modeling en
dc.subject Student's t-distribution en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Clustering approach en
dc.subject.other Clustering procedure en
dc.subject.other Clustering scheme en
dc.subject.other Dimensionality reduction en
dc.subject.other Distributed data en
dc.subject.other Expectation maximization en
dc.subject.other Factor analysis en
dc.subject.other Fuzzy C-means en
dc.subject.other Gaussian mixture models en
dc.subject.other Kullback-Leibler divergence en
dc.subject.other Local subspace modeling en
dc.subject.other Model yields en
dc.subject.other Objective functions en
dc.subject.other Observation space en
dc.subject.other Robust fuzzy clustering en
dc.subject.other Subspace models en
dc.subject.other T distribution en
dc.subject.other T-mixture models en
dc.subject.other Blind source separation en
dc.subject.other Cluster analysis en
dc.subject.other Clustering algorithms en
dc.subject.other Fuzzy rules en
dc.subject.other Fuzzy systems en
dc.subject.other Students en
dc.subject.other Fuzzy clustering en
dc.title Factor analysis latent subspace modeling and robust fuzzy clustering using t-distributions en
heal.type journalArticle en
heal.identifier.primary 10.1109/TFUZZ.2008.924317 en
heal.identifier.secondary http://dx.doi.org/10.1109/TFUZZ.2008.924317 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract Factor analysis is a latent subspace model commonly used for local dimensionality reduction tasks. Fuzzy c-means (FCM) type fuzzy clustering approaches are closely related to Gaussian mixture models (GMMs), and expectation - maximization (EM) like algorithms have been employed in fuzzy clustering with regularized objective functions. Student's t-mixture models (SMMs) have been proposed recently as an alternative to GMMs, resolving their outlier vulnerability problems. In this paper, we propose a novel FCM-type fuzzy clustering scheme providing two significant benefits when compared with the existing approaches. First, it provides a well-established observation space dimensionality reduction framework for fuzzy clustering algorithms based on factor analysis, allowing concurrent performance of fuzzy clustering and, within each cluster, local dimensionality reduction. Second, it exploits the outlier tolerance advantages of SMMs to provide a novel, soundly founded, nonheuristic, robust fuzzy clustering framework by introducing the effective means to incorporate the explicit assumption about Student's t-distributed data into the fuzzy clustering procedure. This way, the proposed model yields a significant performance increase for the fuzzy clustering algorithm, as we experimentally demonstrate. © 2009 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Fuzzy Systems en
dc.identifier.doi 10.1109/TFUZZ.2008.924317 en
dc.identifier.isi ISI:000266677000002 en
dc.identifier.volume 17 en
dc.identifier.issue 3 en
dc.identifier.spage 505 en
dc.identifier.epage 517 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής