HEAL DSpace

Global approximations to cost and production functions using artificial neural networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsionas, EG en
dc.contributor.author Michaelides, PG en
dc.contributor.author Vouldis, AT en
dc.date.accessioned 2014-03-01T01:30:49Z
dc.date.available 2014-03-01T01:30:49Z
dc.date.issued 2009 en
dc.identifier.issn 1875-6883 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19636
dc.subject Econometrics en
dc.subject Neural networks en
dc.subject Production and cost functions en
dc.subject RTS en
dc.subject TFP en
dc.subject.other Arbitrary costs en
dc.subject.other Artificial Neural Network en
dc.subject.other Artificial neural networks en
dc.subject.other Econometrics en
dc.subject.other Global approximation en
dc.subject.other Machine learning research en
dc.subject.other Production function en
dc.subject.other Returns to scale en
dc.subject.other RTS en
dc.subject.other TFP en
dc.subject.other Total factor productivity en
dc.subject.other Backpropagation en
dc.subject.other Cost accounting en
dc.subject.other Costs en
dc.subject.other Economics en
dc.subject.other Neural networks en
dc.subject.other Cost functions en
dc.title Global approximations to cost and production functions using artificial neural networks en
heal.type journalArticle en
heal.identifier.primary 10.2991/ijcis.2009.2.2.4 en
heal.identifier.secondary http://dx.doi.org/10.2991/ijcis.2009.2.2.4 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract The estimation of cost and production functions in economics relies on standard specifications which are less than satisfactory in numerous situations. However, instead of fitting the data with a pre-specified model, Artificial Neural Networks (ANNs) let the data itself serve as evidence to support the model's estimation of the underlying process. In this context, the proposed approach combines the strengths of economics, statistics and machine learning research and the paper proposes a global approximation to arbitrary cost and production functions, respectively, given by ANNs. Suggestions on implementation are proposed and empirical application relies on standard techniques. All relevant measures such as Returns to Scale (RTS) and Total Factor Productivity (TFP) may be computed routinely. Copyright: the authors. en
heal.publisher ATLANTIS PRESS en
heal.journalName International Journal of Computational Intelligence Systems en
dc.identifier.doi 10.2991/ijcis.2009.2.2.4 en
dc.identifier.isi ISI:000272257200005 en
dc.identifier.volume 2 en
dc.identifier.issue 2 en
dc.identifier.spage 132 en
dc.identifier.epage 139 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής