dc.contributor.author |
Tsionas, EG |
en |
dc.contributor.author |
Michaelides, PG |
en |
dc.contributor.author |
Vouldis, AT |
en |
dc.date.accessioned |
2014-03-01T01:30:49Z |
|
dc.date.available |
2014-03-01T01:30:49Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
1875-6883 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19636 |
|
dc.subject |
Econometrics |
en |
dc.subject |
Neural networks |
en |
dc.subject |
Production and cost functions |
en |
dc.subject |
RTS |
en |
dc.subject |
TFP |
en |
dc.subject.other |
Arbitrary costs |
en |
dc.subject.other |
Artificial Neural Network |
en |
dc.subject.other |
Artificial neural networks |
en |
dc.subject.other |
Econometrics |
en |
dc.subject.other |
Global approximation |
en |
dc.subject.other |
Machine learning research |
en |
dc.subject.other |
Production function |
en |
dc.subject.other |
Returns to scale |
en |
dc.subject.other |
RTS |
en |
dc.subject.other |
TFP |
en |
dc.subject.other |
Total factor productivity |
en |
dc.subject.other |
Backpropagation |
en |
dc.subject.other |
Cost accounting |
en |
dc.subject.other |
Costs |
en |
dc.subject.other |
Economics |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Cost functions |
en |
dc.title |
Global approximations to cost and production functions using artificial neural networks |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.2991/ijcis.2009.2.2.4 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.2991/ijcis.2009.2.2.4 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
The estimation of cost and production functions in economics relies on standard specifications which are less than satisfactory in numerous situations. However, instead of fitting the data with a pre-specified model, Artificial Neural Networks (ANNs) let the data itself serve as evidence to support the model's estimation of the underlying process. In this context, the proposed approach combines the strengths of economics, statistics and machine learning research and the paper proposes a global approximation to arbitrary cost and production functions, respectively, given by ANNs. Suggestions on implementation are proposed and empirical application relies on standard techniques. All relevant measures such as Returns to Scale (RTS) and Total Factor Productivity (TFP) may be computed routinely. Copyright: the authors. |
en |
heal.publisher |
ATLANTIS PRESS |
en |
heal.journalName |
International Journal of Computational Intelligence Systems |
en |
dc.identifier.doi |
10.2991/ijcis.2009.2.2.4 |
en |
dc.identifier.isi |
ISI:000272257200005 |
en |
dc.identifier.volume |
2 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
132 |
en |
dc.identifier.epage |
139 |
en |