HEAL DSpace

Hierarchically compressed wavelet synopses

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sacharidis, D en
dc.contributor.author Deligiannakis, A en
dc.contributor.author Sellis, T en
dc.date.accessioned 2014-03-01T01:30:50Z
dc.date.available 2014-03-01T01:30:50Z
dc.date.issued 2009 en
dc.identifier.issn 1066-8888 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19644
dc.subject Compression en
dc.subject Data streams en
dc.subject Wavelet synopsis en
dc.subject.classification Computer Science, Hardware & Architecture en
dc.subject.classification Computer Science, Information Systems en
dc.subject.other Coefficient values en
dc.subject.other Compression en
dc.subject.other Compression schemes en
dc.subject.other Construction algorithms en
dc.subject.other Data sets en
dc.subject.other Data streams en
dc.subject.other Data values en
dc.subject.other Error metric en
dc.subject.other Greedy algorithms en
dc.subject.other Hierarchical relationships en
dc.subject.other Large data sets en
dc.subject.other Optimal sets en
dc.subject.other Real data sets en
dc.subject.other Research studies en
dc.subject.other Space constraints en
dc.subject.other Sum squared errors en
dc.subject.other Tree structures en
dc.subject.other Wavelet coefficients en
dc.subject.other Wavelet synopsis en
dc.subject.other Data mining en
dc.subject.other Trees (mathematics) en
dc.subject.other Wavelet decomposition en
dc.subject.other Wavelet transforms en
dc.subject.other Wireless telecommunication systems en
dc.subject.other Data compression en
dc.title Hierarchically compressed wavelet synopses en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00778-008-0096-z en
heal.identifier.secondary http://dx.doi.org/10.1007/s00778-008-0096-z en
heal.language English en
heal.publicationDate 2009 en
heal.abstract The wavelet decomposition is a proven tool for constructing concise synopses of large data sets that can be used to obtain fast approximate answers. Existing research studies focus on selecting an optimal set of wavelet coefficients to store so as to minimize some error metric, without however seeking to reduce the size of the wavelet coefficients themselves. In many real data sets the existence of large spikes in the data values results in many large coefficient values lying on paths of a conceptual tree structure known as the error tree. To exploit this fact, we introduce in this paper a novel compression scheme for wavelet synopses, termed hierarchically compressed wavelet synopses, that fully exploits hierarchical relationships among coefficients in order to reduce their storage. Our proposed compression scheme allows for a larger number of coefficients to be stored for a given space constraint thus resulting in increased accuracy of the produced synopsis. We propose optimal, approximate and greedy algorithms for constructing hierarchically compressed wavelet synopses that minimize the sum squared error while not exceeding a given space budget. Extensive experimental results on both synthetic and real-world data sets validate our novel compression scheme and demonstrate the effectiveness of our algorithms against existing synopsis construction algorithms. © 2008 Springer-Verlag. en
heal.publisher SPRINGER en
heal.journalName VLDB Journal en
dc.identifier.doi 10.1007/s00778-008-0096-z en
dc.identifier.isi ISI:000262317000009 en
dc.identifier.volume 18 en
dc.identifier.issue 1 en
dc.identifier.spage 203 en
dc.identifier.epage 231 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής