HEAL DSpace

Identifying drug effects via pathway alterations using an integer linear programming optimization formulation on phosphoproteomic data

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mitsos, A en
dc.contributor.author Melas, IN en
dc.contributor.author Siminelakis, P en
dc.contributor.author Chairakaki, AD en
dc.contributor.author Saez-Rodriguez, J en
dc.contributor.author Alexopoulos, LG en
dc.date.accessioned 2014-03-01T01:30:52Z
dc.date.available 2014-03-01T01:30:52Z
dc.date.issued 2009 en
dc.identifier.issn 1553-734X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19659
dc.subject Drug Effects en
dc.subject Integer Linear Program en
dc.subject.classification Biochemical Research Methods en
dc.subject.classification Mathematical & Computational Biology en
dc.subject.other gefitinib en
dc.subject.other interleukin 1alpha en
dc.subject.other phosphoprotein en
dc.subject.other antineoplastic agent en
dc.subject.other article en
dc.subject.other cell strain HepG2 en
dc.subject.other drug effect en
dc.subject.other drug efficacy en
dc.subject.other human en
dc.subject.other human cell en
dc.subject.other algorithm en
dc.subject.other biological model en
dc.subject.other metabolism en
dc.subject.other methodology en
dc.subject.other pharmacology en
dc.subject.other protein database en
dc.subject.other proteomics en
dc.subject.other reproducibility en
dc.subject.other signal transduction en
dc.subject.other Algorithms en
dc.subject.other Antineoplastic Agents en
dc.subject.other Databases, Protein en
dc.subject.other Hep G2 Cells en
dc.subject.other Humans en
dc.subject.other Models, Biological en
dc.subject.other Pharmacology en
dc.subject.other Phosphoproteins en
dc.subject.other Proteomics en
dc.subject.other Reproducibility of Results en
dc.subject.other Signal Transduction en
dc.title Identifying drug effects via pathway alterations using an integer linear programming optimization formulation on phosphoproteomic data en
heal.type journalArticle en
heal.identifier.primary 10.1371/journal.pcbi.1000591 en
heal.identifier.secondary http://dx.doi.org/10.1371/journal.pcbi.1000591 en
heal.identifier.secondary e1000591 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract Understanding the mechanisms of cell function and drug action is a major endeavor in the pharmaceutical industry. Drug effects are governed by the intrinsic properties of the drug (i.e., selectivity and potency) and the specific signaling transduction network of the host (i.e., normal vs. diseased cells). Here, we describe an unbiased, phosphoproteomic-based approach to identify drug effects by monitoring drug-induced topology alterations. With our proposed method, drug effects are investigated under diverse stimulations of the signaling network. Starting with a generic pathway made of logical gates, we build a cell-type specific map by constraining it to fit 13 key phopshoprotein signals under 55 experimental conditions. Fitting is performed via an Integer Linear Program (ILP) formulation and solution by standard ILP solvers; a procedure that drastically outperforms previous fitting schemes. Then, knowing the cell's topology, we monitor the same key phosphoprotein signals under the presence of drug and we re-optimize the specific map to reveal drug-induced topology alterations. To prove our case, we make a topology for the hepatocytic cell-line HepG2 and we evaluate the effects of 4 drugs: 3 selective inhibitors for the Epidermal Growth Factor Receptor (EGFR) and a non-selective drug. We confirm effects easily predictable from the drugs' main target (i.e., EGFR inhibitors blocks the EGFR pathway) but we also uncover unanticipated effects due to either drug promiscuity or the cell's specific topology. An interesting finding is that the selective EGFR inhibitor Gefitinib inhibits signaling downstream the Interleukin-1alpha (IL1a) pathway; an effect that cannot be extracted from binding affinity-based approaches. Our method represents an unbiased approach to identify drug effects on small to medium size pathways which is scalable to larger topologies with any type of signaling interventions (small molecules, RNAi, etc). The method can reveal drug effects on pathways, the cornerstone for identifying mechanisms of drug's efficacy. © 2009 Mitsos et al. en
heal.publisher PUBLIC LIBRARY SCIENCE en
heal.journalName PLoS Computational Biology en
dc.identifier.doi 10.1371/journal.pcbi.1000591 en
dc.identifier.isi ISI:000274229000009 en
dc.identifier.volume 5 en
dc.identifier.issue 12 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής