dc.contributor.author |
Kokolakis, G |
en |
dc.contributor.author |
Fouskakis, D |
en |
dc.date.accessioned |
2014-03-01T01:30:52Z |
|
dc.date.available |
2014-03-01T01:30:52Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0167-9473 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19665 |
|
dc.subject |
Heuristic Algorithm |
en |
dc.subject |
Heuristic Method |
en |
dc.subject |
Information Loss |
en |
dc.subject |
Polynomial Algorithm |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Statistics & Probability |
en |
dc.subject.other |
Heuristic algorithms |
en |
dc.subject.other |
Continuous datum |
en |
dc.subject.other |
Data distortions |
en |
dc.subject.other |
Information loss |
en |
dc.subject.other |
Polynomial algorithms |
en |
dc.subject.other |
Small groups |
en |
dc.subject.other |
Heuristic methods |
en |
dc.title |
Importance partitioning in micro-aggregation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.csda.2008.09.028 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.csda.2008.09.028 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
One of the techniques of data holders for the protection of confidentiality of continuous data is that of micro-aggregation. Rather than releasing raw data (individual records), micro-aggregation releases the averages of small groups and thus reduces the risk of identity disclosure. At the same time the method implies loss of information and often distorts the data. Thus, the choice of groups is very crucial to minimize the information loss and the data distortion. No exact polynomial algorithms exist up to date for optimal microaggregation, and so the usage of heuristic methods is necessary. A heuristic algorithm, based on the notion of importance partitioning, is proposed and it is shown that compared with other micro-aggregation heuristics achieves improved performance. (C) 2008 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Computational Statistics and Data Analysis |
en |
dc.identifier.doi |
10.1016/j.csda.2008.09.028 |
en |
dc.identifier.isi |
ISI:000264907600001 |
en |
dc.identifier.volume |
53 |
en |
dc.identifier.issue |
7 |
en |
dc.identifier.spage |
2439 |
en |
dc.identifier.epage |
2445 |
en |