HEAL DSpace

Importance partitioning in micro-aggregation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kokolakis, G en
dc.contributor.author Fouskakis, D en
dc.date.accessioned 2014-03-01T01:30:52Z
dc.date.available 2014-03-01T01:30:52Z
dc.date.issued 2009 en
dc.identifier.issn 0167-9473 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19665
dc.subject Heuristic Algorithm en
dc.subject Heuristic Method en
dc.subject Information Loss en
dc.subject Polynomial Algorithm en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Statistics & Probability en
dc.subject.other Heuristic algorithms en
dc.subject.other Continuous datum en
dc.subject.other Data distortions en
dc.subject.other Information loss en
dc.subject.other Polynomial algorithms en
dc.subject.other Small groups en
dc.subject.other Heuristic methods en
dc.title Importance partitioning in micro-aggregation en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.csda.2008.09.028 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.csda.2008.09.028 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract One of the techniques of data holders for the protection of confidentiality of continuous data is that of micro-aggregation. Rather than releasing raw data (individual records), micro-aggregation releases the averages of small groups and thus reduces the risk of identity disclosure. At the same time the method implies loss of information and often distorts the data. Thus, the choice of groups is very crucial to minimize the information loss and the data distortion. No exact polynomial algorithms exist up to date for optimal microaggregation, and so the usage of heuristic methods is necessary. A heuristic algorithm, based on the notion of importance partitioning, is proposed and it is shown that compared with other micro-aggregation heuristics achieves improved performance. (C) 2008 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Computational Statistics and Data Analysis en
dc.identifier.doi 10.1016/j.csda.2008.09.028 en
dc.identifier.isi ISI:000264907600001 en
dc.identifier.volume 53 en
dc.identifier.issue 7 en
dc.identifier.spage 2439 en
dc.identifier.epage 2445 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής