HEAL DSpace

Improved methods for extracting frequent itemsets from interim-support trees

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Coenen, F en
dc.contributor.author Leng, P en
dc.contributor.author Pagourtzis, A en
dc.contributor.author Rytter, W en
dc.contributor.author Souliou, D en
dc.date.accessioned 2014-03-01T01:30:52Z
dc.date.available 2014-03-01T01:30:52Z
dc.date.issued 2009 en
dc.identifier.issn 0038-0644 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19666
dc.subject Association rules en
dc.subject Data mining en
dc.subject Frequent itemsets en
dc.subject Set-enumeration trees en
dc.subject.classification Computer Science, Software Engineering en
dc.subject.other Computational tasks en
dc.subject.other Data mining and knowledge discoveries en
dc.subject.other Experimental comparisons en
dc.subject.other Frequent itemsets en
dc.subject.other Frequent sets en
dc.subject.other Heidelberg en
dc.subject.other Improved methods en
dc.subject.other Item sets en
dc.subject.other Lecture Notes en
dc.subject.other Mining association rules en
dc.subject.other Relational database en
dc.subject.other Set-enumeration trees en
dc.subject.other Tree pruning en
dc.subject.other Tree structures en
dc.subject.other Algorithms en
dc.subject.other Artificial intelligence en
dc.subject.other Association rules en
dc.subject.other Associative processing en
dc.subject.other Knowledge based systems en
dc.subject.other Knowledge management en
dc.subject.other Trees (mathematics) en
dc.title Improved methods for extracting frequent itemsets from interim-support trees en
heal.type journalArticle en
heal.identifier.primary 10.1002/spe.902 en
heal.identifier.secondary http://dx.doi.org/10.1002/spe.902 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract Mining association rules in relational databases is a significant computational task with lots of applications. A fundamental ingredient of this task is the discovery of sets of attributes (itemsets) whose frequency in the data exceeds some threshold value. In this paper we describe two algorithms for completing the calculation of frequent sets using a tree structure for storing partial supports, called interim-support (IS) tree. The first of our algorithms (T-Tree-First (TTF)) uses a novel tree pruning technique, based on the notion of (fixed-prefix) potential inclusion, which is specially designed for trees that are implemented using only two pointers per node. This allows to implement the IS tree in a space-efficient manner. The second algorithm (P-Tree-First (PTF)) explores the idea of storing the frequent itemsets in a second tree structure, called the total support tree (T-tree); the main innovation lies in the use of multiple pointers per node, which provides rapid access to the nodes of the T-tree and makes it possible to design a new, usually faster, method for updating them. Experimental comparison shows that these techniques result in considerable speedup for both algorithms compared with earlier approaches that also use IS trees (Principles of Data Mining and Knowledge Discovery, Proceedings of the 5th European Conference, PKDD, 2001, Freiburg, September 2001 (Lecture Notes in Artificial Intelligence, vol. 2168). Springer: Berlin, Heidelberg, 54-66, Journal of Knowledge-Based Syst. 2000, 13:141-149). Further comparison between the two new algorithms, shows that the PTF is generally faster on instances with a large number of frequent itemsets, provided that they are relatively short, whereas TTF is more appropriate whenever there exist few or quite long frequent itemsets, in addition. TTF behaves well on instances in which the densities of the items of file database have a high variance. Copyright (C) 2008 John Wiley & Sons. Ltd. en
heal.publisher JOHN WILEY & SONS LTD en
heal.journalName Software - Practice and Experience en
dc.identifier.doi 10.1002/spe.902 en
dc.identifier.isi ISI:000264940900001 en
dc.identifier.volume 39 en
dc.identifier.issue 6 en
dc.identifier.spage 551 en
dc.identifier.epage 571 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής