dc.contributor.author |
Chatzigiannakis, V |
en |
dc.contributor.author |
Papavassiliou, S |
en |
dc.contributor.author |
Androulidakis, G |
en |
dc.date.accessioned |
2014-03-01T01:30:52Z |
|
dc.date.available |
2014-03-01T01:30:52Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
19390122 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19667 |
|
dc.subject |
Anomaly detection |
en |
dc.subject |
Metric correlation |
en |
dc.subject |
Network monitoring |
en |
dc.subject |
Network security |
en |
dc.subject.other |
Anomaly detection |
en |
dc.subject.other |
Combined effect |
en |
dc.subject.other |
Core routers |
en |
dc.subject.other |
Metric analysis |
en |
dc.subject.other |
Metric correlation |
en |
dc.subject.other |
Multi-link |
en |
dc.subject.other |
Network anomaly detection |
en |
dc.subject.other |
Network monitoring |
en |
dc.subject.other |
Observed data |
en |
dc.subject.other |
Operational effectiveness |
en |
dc.subject.other |
Realistic environments |
en |
dc.subject.other |
Technology network |
en |
dc.subject.other |
Traffic compositions |
en |
dc.subject.other |
Financial data processing |
en |
dc.subject.other |
Internet |
en |
dc.subject.other |
Metric system |
en |
dc.subject.other |
Principal component analysis |
en |
dc.subject.other |
Network security |
en |
dc.title |
Improving network anomaly detection effectiveness via an integrated multi-metric-multi-link (M3L) PCA-based approach |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/sec.69 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/sec.69 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
In this paper an enhanced anomaly detection approach based on the fusion of data gathered from various monitorsspread throughout a wide area network is introduced. The proposed approach is based on the application of principal component analysis on multi-metric-multi-link data, and provides an efficient and unified way of taking into account the combined effect of the correlated observed data, for anomaly detection purposes. It actually introduces a generalized anomaly detection methodology, capable of detecting not only volume based anomalies but also a much wider range of classes of anomalies, such as the ones that may result in alterations in traffic composition or traffic paths. The performance of the proposed multi-metric-multi-link anomaly detection approach is evaluated via simulation, and is compared against the corresponding techniques that are based on the single-metric analysis. Finally, its operational effectiveness is demonstrated in a realistic environment using real data collected from the core routers of the Greek research and technology network (GRNET). © 2008 JohnWiley & Sons, Ltd. |
en |
heal.journalName |
Security and Communication Networks |
en |
dc.identifier.doi |
10.1002/sec.69 |
en |
dc.identifier.volume |
2 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
289 |
en |
dc.identifier.epage |
304 |
en |