dc.contributor.author |
Vlyssides, AG |
en |
dc.contributor.author |
Mai, ST |
en |
dc.contributor.author |
Barampouti, EMP |
en |
dc.contributor.author |
Loukakis, HN |
en |
dc.date.accessioned |
2014-03-01T01:30:56Z |
|
dc.date.available |
2014-03-01T01:30:56Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
1093-4529 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19679 |
|
dc.subject |
Arundo Donax |
en |
dc.subject |
Factorial experiment |
en |
dc.subject |
Gravel size |
en |
dc.subject |
Phragmites Australis |
en |
dc.subject |
Reed bed |
en |
dc.subject.classification |
Engineering, Environmental |
en |
dc.subject.classification |
Environmental Sciences |
en |
dc.subject.other |
Arundo Donax |
en |
dc.subject.other |
Coarse gravel |
en |
dc.subject.other |
Cosmetic industry |
en |
dc.subject.other |
Factorial experiment |
en |
dc.subject.other |
Factorial experimental design |
en |
dc.subject.other |
Phragmites |
en |
dc.subject.other |
Phragmites australis |
en |
dc.subject.other |
Reed bed |
en |
dc.subject.other |
Tertiary treatment |
en |
dc.subject.other |
Total Kjeldahl nitrogens |
en |
dc.subject.other |
Total phosphorous |
en |
dc.subject.other |
Total solids |
en |
dc.subject.other |
Total suspended solids |
en |
dc.subject.other |
Treatment systems |
en |
dc.subject.other |
Wastewater treatment plants |
en |
dc.subject.other |
Biochemical oxygen demand |
en |
dc.subject.other |
Gravel |
en |
dc.subject.other |
Oxygen |
en |
dc.subject.other |
Phosphorus |
en |
dc.subject.other |
Pilot plants |
en |
dc.subject.other |
Vegetation |
en |
dc.subject.other |
Wastewater |
en |
dc.subject.other |
Wastewater reclamation |
en |
dc.subject.other |
Water treatment plants |
en |
dc.subject.other |
Wastewater treatment |
en |
dc.subject.other |
nitrogen |
en |
dc.subject.other |
phosphorous acid |
en |
dc.subject.other |
cosmetic |
en |
dc.subject.other |
iron |
en |
dc.subject.other |
phosphorus |
en |
dc.subject.other |
article |
en |
dc.subject.other |
biochemical oxygen demand |
en |
dc.subject.other |
chemical oxygen demand |
en |
dc.subject.other |
cosmetic industry |
en |
dc.subject.other |
experimental design |
en |
dc.subject.other |
factorial design |
en |
dc.subject.other |
nonhuman |
en |
dc.subject.other |
reactor |
en |
dc.subject.other |
suspended particulate matter |
en |
dc.subject.other |
vegetation |
en |
dc.subject.other |
waste water management |
en |
dc.subject.other |
waste water treatment plant |
en |
dc.subject.other |
industrial waste |
en |
dc.subject.other |
metabolism |
en |
dc.subject.other |
methodology |
en |
dc.subject.other |
oxidation reduction reaction |
en |
dc.subject.other |
oxygen consumption |
en |
dc.subject.other |
plant |
en |
dc.subject.other |
Poaceae |
en |
dc.subject.other |
sewage |
en |
dc.subject.other |
water pollutant |
en |
dc.subject.other |
Arundo |
en |
dc.subject.other |
Arundo donax |
en |
dc.subject.other |
Phragmites |
en |
dc.subject.other |
Phragmites australis |
en |
dc.subject.other |
Cosmetics |
en |
dc.subject.other |
Industrial Waste |
en |
dc.subject.other |
Iron |
en |
dc.subject.other |
Nitrogen |
en |
dc.subject.other |
Oxidation-Reduction |
en |
dc.subject.other |
Oxygen Consumption |
en |
dc.subject.other |
Phosphorus |
en |
dc.subject.other |
Plants |
en |
dc.subject.other |
Poaceae |
en |
dc.subject.other |
Waste Disposal, Fluid |
en |
dc.subject.other |
Water Pollutants, Chemical |
en |
dc.title |
Influence of vegetation and gravel mesh on the tertiary treatment of wastewater from a cosmetics industry |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/10934520902928669 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/10934520902928669 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
To estimate the influence of gravel mesh (fine and coarse) and vegetation (Phragmites and Arundo) on the efficiency of a reed bed, a pilot plant was included after the wastewater treatment plant of a cosmetic industry treatment system according to a 2(2) factorial experimental design. The maximum biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and total phosphorous (TP) reduction was observed in the reactor, where Phragmites and fine gravel were used. In the reactor with Phragmites and coarse gravel, the maximum total Kjeldahl nitrogen (TKN) and total suspended solids (TSS) reduction was observed. The maximum total solids reduction was measured in the reed bed, which was filled with Arundo and coarse gravel. Conclusively, the treatment of a cosmetic industry's wastewater by reed beds as a tertiary treatment method is quite effective. |
en |
heal.publisher |
TAYLOR & FRANCIS INC |
en |
heal.journalName |
Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering |
en |
dc.identifier.doi |
10.1080/10934520902928669 |
en |
dc.identifier.isi |
ISI:000268249100010 |
en |
dc.identifier.volume |
44 |
en |
dc.identifier.issue |
8 |
en |
dc.identifier.spage |
820 |
en |
dc.identifier.epage |
826 |
en |