dc.contributor.author |
Provatidis, CG |
en |
dc.date.accessioned |
2014-03-01T01:30:56Z |
|
dc.date.available |
2014-03-01T01:30:56Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0029-5981 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19682 |
|
dc.subject |
finite elements |
en |
dc.subject |
transfinite interpolation |
en |
dc.subject |
global approximation |
en |
dc.subject |
boundary-value problems |
en |
dc.subject |
global collocation |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.other |
FINITE-ELEMENT-METHOD |
en |
dc.subject.other |
RADIAL BASIS FUNCTION |
en |
dc.subject.other |
BOUNDARY COLLOCATION METHOD |
en |
dc.subject.other |
WAVE-PROPAGATION PROBLEMS |
en |
dc.subject.other |
FREE-VIBRATION ANALYSIS |
en |
dc.subject.other |
B-SPLINE COLLOCATION |
en |
dc.subject.other |
PATCH MACROELEMENTS |
en |
dc.subject.other |
ACOUSTIC EIGENANALYSIS |
en |
dc.subject.other |
POTENTIAL PROBLEMS |
en |
dc.subject.other |
INTERPOLATION |
en |
dc.title |
Integration-free Coons macroelements for the solution of 2D Poisson problems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/nme.2424 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/nme.2424 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
Large isoparametric macroelements with closed-form cardinal global shape functions under the label 'Coons-patch macroelements' (CPM) have been previously proposed and used in conjunction with the finite element method and the boundary element method. This paper continues the research on the performance of CPM in conjunction with the collocation method. In contrast to the previous CPM that was based on a Galerkin/Ritz formulation, no domain integration is now required, a fact that justifies the name 'integration-free Coons macroelements. Therefore, in addition to avoiding mesh generation, and saving human effort, the proposed technique has the additional advantage of further reducing the computer effort. The theory is supported by five test cases concerning Poisson and Laplace problems within 2D smooth quadrilateral domains. Copyright (C) 2008 John Wiley & Sons, Ltd. |
en |
heal.publisher |
JOHN WILEY & SONS LTD |
en |
heal.journalName |
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING |
en |
dc.identifier.doi |
10.1002/nme.2424 |
en |
dc.identifier.isi |
ISI:000262546100005 |
en |
dc.identifier.volume |
77 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
536 |
en |
dc.identifier.epage |
557 |
en |