HEAL DSpace

Intelligent discovery of the capabilities of reconfiguration options in a cognitive wireless B3G context

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Demestichas, K en
dc.contributor.author Adamopoulou, E en
dc.contributor.author Theologou, M en
dc.date.accessioned 2014-03-01T01:30:56Z
dc.date.available 2014-03-01T01:30:56Z
dc.date.issued 2009 en
dc.identifier.issn 1432-7643 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19683
dc.subject B3G wireless infrastructures en
dc.subject Capacity estimation en
dc.subject Cognitive radio en
dc.subject Learning and adaptation en
dc.subject SINR estimation en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.other B3G wireless infrastructures en
dc.subject.other Capacity estimation en
dc.subject.other Cognitive radio en
dc.subject.other Learning and adaptation en
dc.subject.other SINR estimation en
dc.subject.other Cellular radio systems en
dc.subject.other Channel estimation en
dc.subject.other Dynamic models en
dc.subject.other Estimation en
dc.subject.other Radio en
dc.subject.other Radio systems en
dc.subject.other Signal to noise ratio en
dc.subject.other Wireless networks en
dc.subject.other Wireless telecommunication systems en
dc.subject.other Cognitive systems en
dc.title Intelligent discovery of the capabilities of reconfiguration options in a cognitive wireless B3G context en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00500-008-0374-0 en
heal.identifier.secondary http://dx.doi.org/10.1007/s00500-008-0374-0 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract Beyond 3G (B3G) wireless connectivity can efficiently be realized by exploiting cognitive networking concepts. Cognitive systems dynamically reconfigure the radio access technologies and the spectrum they use, based on experience, in order to adapt to the changing environment conditions. However, dynamic reconfiguration decisions call for robust discovery, i.e., radio-scene analysis and channel identification schemes. This paper intends to contribute in the areas of radio-scene analysis and channel identification: first, by providing an overview of interference estimation methods, and explaining how capacity estimations can be derived based on the measured interference levels; second, by specifying the information flow for the radio-scene analysis process of a cognitive radio system; and third, by enhancing the above with a learning system, which is essential for obtaining a truly cognitive process. The proposed approach lies in the introduction of a robust probabilistic model for optimal prediction of the capabilities of alternative configurations, in terms of capacity. © Springer-Verlag 2008. en
heal.publisher SPRINGER en
heal.journalName Soft Computing en
dc.identifier.doi 10.1007/s00500-008-0374-0 en
dc.identifier.isi ISI:000264874700003 en
dc.identifier.volume 13 en
dc.identifier.issue 10 en
dc.identifier.spage 945 en
dc.identifier.epage 958 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής