dc.contributor.author |
Topouzelis, K |
en |
dc.contributor.author |
Stathakis, D |
en |
dc.contributor.author |
Karathanassi, V |
en |
dc.date.accessioned |
2014-03-01T01:30:57Z |
|
dc.date.available |
2014-03-01T01:30:57Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0143-1161 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19690 |
|
dc.subject |
Feature Selection |
en |
dc.subject |
Genetic Algorithm |
en |
dc.subject |
Oil Spill |
en |
dc.subject.classification |
Remote Sensing |
en |
dc.subject.classification |
Imaging Science & Photographic Technology |
en |
dc.subject.other |
Classification accuracy |
en |
dc.subject.other |
Data sets |
en |
dc.subject.other |
Feature combination |
en |
dc.subject.other |
Feature selection |
en |
dc.subject.other |
Oil spill detection |
en |
dc.subject.other |
SAR Images |
en |
dc.subject.other |
Statistical features |
en |
dc.subject.other |
Hazardous materials spills |
en |
dc.subject.other |
Object recognition |
en |
dc.subject.other |
Oil spills |
en |
dc.subject.other |
accuracy assessment |
en |
dc.subject.other |
artificial neural network |
en |
dc.subject.other |
data set |
en |
dc.subject.other |
detection method |
en |
dc.subject.other |
genetic algorithm |
en |
dc.subject.other |
image classification |
en |
dc.subject.other |
oil spill |
en |
dc.subject.other |
qualitative analysis |
en |
dc.subject.other |
quantitative analysis |
en |
dc.subject.other |
synthetic aperture radar |
en |
dc.title |
Investigation of genetic algorithms contribution to feature selection for oil spill detection |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/01431160802339456 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/01431160802339456 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
Oil spill detection methodologies traditionally use arbitrary selected quantitative and qualitative statistical features (e.g. area, perimeter, complexity) for classifying dark objects on SAR images to oil spills or look-alike phenomena. In our previous work genetic algorithms in synergy with neural networks were used to suggest the best feature combination maximizing the discrimination of oil spills and look-alike phenomena. In the present work, a detailed examination of robustness of the proposed combination of features is given. The method is unique, as it searches though a large number of combinations derived from the initial 25 features. The results show that a combination of 10 features yields the most accurate results. Based on a dataset consisting of 69 oil spills and 90 look-alikes, classification accuracies of 85.3% for oil spills and in 84.4% for look-alikes are achieved. |
en |
heal.publisher |
TAYLOR & FRANCIS LTD |
en |
heal.journalName |
International Journal of Remote Sensing |
en |
dc.identifier.doi |
10.1080/01431160802339456 |
en |
dc.identifier.isi |
ISI:000264336100005 |
en |
dc.identifier.volume |
30 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
611 |
en |
dc.identifier.epage |
625 |
en |