HEAL DSpace

Investigation of genetic algorithms contribution to feature selection for oil spill detection

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Topouzelis, K en
dc.contributor.author Stathakis, D en
dc.contributor.author Karathanassi, V en
dc.date.accessioned 2014-03-01T01:30:57Z
dc.date.available 2014-03-01T01:30:57Z
dc.date.issued 2009 en
dc.identifier.issn 0143-1161 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19690
dc.subject Feature Selection en
dc.subject Genetic Algorithm en
dc.subject Oil Spill en
dc.subject.classification Remote Sensing en
dc.subject.classification Imaging Science & Photographic Technology en
dc.subject.other Classification accuracy en
dc.subject.other Data sets en
dc.subject.other Feature combination en
dc.subject.other Feature selection en
dc.subject.other Oil spill detection en
dc.subject.other SAR Images en
dc.subject.other Statistical features en
dc.subject.other Hazardous materials spills en
dc.subject.other Object recognition en
dc.subject.other Oil spills en
dc.subject.other accuracy assessment en
dc.subject.other artificial neural network en
dc.subject.other data set en
dc.subject.other detection method en
dc.subject.other genetic algorithm en
dc.subject.other image classification en
dc.subject.other oil spill en
dc.subject.other qualitative analysis en
dc.subject.other quantitative analysis en
dc.subject.other synthetic aperture radar en
dc.title Investigation of genetic algorithms contribution to feature selection for oil spill detection en
heal.type journalArticle en
heal.identifier.primary 10.1080/01431160802339456 en
heal.identifier.secondary http://dx.doi.org/10.1080/01431160802339456 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract Oil spill detection methodologies traditionally use arbitrary selected quantitative and qualitative statistical features (e.g. area, perimeter, complexity) for classifying dark objects on SAR images to oil spills or look-alike phenomena. In our previous work genetic algorithms in synergy with neural networks were used to suggest the best feature combination maximizing the discrimination of oil spills and look-alike phenomena. In the present work, a detailed examination of robustness of the proposed combination of features is given. The method is unique, as it searches though a large number of combinations derived from the initial 25 features. The results show that a combination of 10 features yields the most accurate results. Based on a dataset consisting of 69 oil spills and 90 look-alikes, classification accuracies of 85.3% for oil spills and in 84.4% for look-alikes are achieved. en
heal.publisher TAYLOR & FRANCIS LTD en
heal.journalName International Journal of Remote Sensing en
dc.identifier.doi 10.1080/01431160802339456 en
dc.identifier.isi ISI:000264336100005 en
dc.identifier.volume 30 en
dc.identifier.issue 3 en
dc.identifier.spage 611 en
dc.identifier.epage 625 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής