dc.contributor.author | Valagiannopoulos, CA | en |
dc.contributor.author | Tsitsas, NL | en |
dc.date.accessioned | 2014-03-01T01:31:00Z | |
dc.date.available | 2014-03-01T01:31:00Z | |
dc.date.issued | 2009 | en |
dc.identifier.issn | 1084-7529 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/19711 | |
dc.subject.classification | Optics | en |
dc.subject.other | Average values | en |
dc.subject.other | Environmental science | en |
dc.subject.other | Far-field patterns | en |
dc.subject.other | Linear combinations | en |
dc.subject.other | Numerical results | en |
dc.subject.other | Piece wise | en |
dc.subject.other | Plane-wave scatterings | en |
dc.subject.other | Scattered fields | en |
dc.subject.other | Step approximations | en |
dc.subject.other | T matrixes | en |
dc.subject.other | T-matrix methods | en |
dc.subject.other | Taylor expansions | en |
dc.subject.other | Wave numbers | en |
dc.subject.other | Chemical engineering | en |
dc.subject.other | Plasmons | en |
dc.subject.other | Electromagnetic wave scattering | en |
dc.title | Linearization of the T-matrix solution for quasi-homogeneous scatterers | en |
heal.type | journalArticle | en |
heal.identifier.primary | 10.1364/JOSAA.26.000870 | en |
heal.identifier.secondary | http://dx.doi.org/10.1364/JOSAA.26.000870 | en |
heal.language | English | en |
heal.publicationDate | 2009 | en |
heal.abstract | Interesting applications arising in optical and chemical engineering, environmental science, and biology motivate the investigation of electromagnetic wave scattering problems by radially inhomogeneous obstacles. Our main purpose is the investigation of plane-wave scattering by quasi-homogeneous obstacles, that is, obstacles with wavenumbers not exhibiting large variations from a specific average value (k) over bar. The analysis is presented separately for a slab (1D), a cylindrical (2D), and a spherical (3D) scatterer. First, we consider a step approximation of the wavenumber and express the field coefficients by applying a T-matrix method for the corresponding piecewise homogeneous scatterer. Then, by performing an appropriate Taylor expansion, we express the field coefficients as linear combinations of the distances of the wavenumber samples from (k) over bar. The combinations' weights are called layer-factors, because each one describes the contribution of a specific layer in the scattered field. Furthermore, it is shown that the far-field pattern of the quasi-homogeneous scatterer is decomposed into that of the respective homogeneous scatterer plus the perturbation far-field pattern, depending on the wave- number's deviations from (k) over bar. Several numerical results are presented concerning the comparison of the far-field patterns computed by the proposed technique and the T-matrix method, as well as investigations of the perturbation far-field pattern and the layer-factors. Linear, sinusoidal, Lunenburg type, and triangular wavenumber profiles are analyzed. (C) 2009 Optical Society of America | en |
heal.publisher | OPTICAL SOC AMER | en |
heal.journalName | Journal of the Optical Society of America A: Optics and Image Science, and Vision | en |
dc.identifier.doi | 10.1364/JOSAA.26.000870 | en |
dc.identifier.isi | ISI:000265446900017 | en |
dc.identifier.volume | 26 | en |
dc.identifier.issue | 4 | en |
dc.identifier.spage | 870 | en |
dc.identifier.epage | 881 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |