HEAL DSpace

Memory properties and fractional integration in transportation time-series

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Karlaftis, MG en
dc.contributor.author Vlahogianni, EI en
dc.date.accessioned 2014-03-01T01:31:04Z
dc.date.available 2014-03-01T01:31:04Z
dc.date.issued 2009 en
dc.identifier.issn 0968-090X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19736
dc.subject ARIMA en
dc.subject Fractional integration en
dc.subject GARCH en
dc.subject Time-series en
dc.subject Transportation en
dc.subject.classification Transportation Science & Technology en
dc.subject.other ARIMA en
dc.subject.other ARIMA models en
dc.subject.other Artificial correlation en
dc.subject.other Auto-regressive integrated moving average en
dc.subject.other Classical model en
dc.subject.other Differentiation parameters en
dc.subject.other Fractional integration en
dc.subject.other GARCH en
dc.subject.other Generalized autoregressive conditional heteroskedasticity en
dc.subject.other Long-memory property en
dc.subject.other Memory models en
dc.subject.other Moving averages en
dc.subject.other Theoretical foundations en
dc.subject.other Time series models en
dc.subject.other Traffic Engineering en
dc.subject.other Transportation analysis en
dc.subject.other Transportation time en
dc.subject.other Highway engineering en
dc.subject.other Model structures en
dc.subject.other integrated approach en
dc.subject.other model en
dc.subject.other parameterization en
dc.subject.other theoretical study en
dc.subject.other time series analysis en
dc.subject.other transportation system en
dc.title Memory properties and fractional integration in transportation time-series en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.trc.2009.03.001 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.trc.2009.03.001 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract In transportation analyses, autoregressive integrated moving average (ARIMA) and generalized autoregressive conditional heteroskedasticity (GARCH) models have been widely used mainly because of their well established theoretical foundation and ease of application. However, they lack the ability to capture long memory properties and do not jointly treat the mean and variance (variability) of a time-series. We employ fractionally integrated dual memory models and compare results to classical time-series models in a traffic engineering context. Results indicate that dual memory models offer better representation of the original time-series than classical models; further, forcing the differentiation parameter of ARIMA model to equal I leads to over-inflated moving average terms and, consequently, to questionable models with artificial correlation structures. (C) 2009 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Transportation Research Part C: Emerging Technologies en
dc.identifier.doi 10.1016/j.trc.2009.03.001 en
dc.identifier.isi ISI:000267360500008 en
dc.identifier.volume 17 en
dc.identifier.issue 4 en
dc.identifier.spage 444 en
dc.identifier.epage 453 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής