dc.contributor.author |
Markolefas, SI |
en |
dc.contributor.author |
Tsouvalas, DA |
en |
dc.contributor.author |
Tsamasphyros, GI |
en |
dc.date.accessioned |
2014-03-01T01:31:06Z |
|
dc.date.available |
2014-03-01T01:31:06Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0178-7675 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19747 |
|
dc.subject |
Dipolar strain gradient elasticity |
en |
dc.subject |
Mixed finite elements |
en |
dc.subject |
Mixed formulations |
en |
dc.subject |
P-Version |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Crack tips |
en |
dc.subject.other |
Cracks |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Programming theory |
en |
dc.subject.other |
Strain measurement |
en |
dc.subject.other |
Anti planes |
en |
dc.subject.other |
Approximation methods |
en |
dc.subject.other |
Basis functions |
en |
dc.subject.other |
Crack problems |
en |
dc.subject.other |
Crack-tip |
en |
dc.subject.other |
Different length scale |
en |
dc.subject.other |
Dipolar strain gradient elasticity |
en |
dc.subject.other |
Displacement fields |
en |
dc.subject.other |
Exact solutions |
en |
dc.subject.other |
Finite element approximations |
en |
dc.subject.other |
Gradient elasticities |
en |
dc.subject.other |
High orders |
en |
dc.subject.other |
Linear gradients |
en |
dc.subject.other |
Material micro structures |
en |
dc.subject.other |
Mesh refinements |
en |
dc.subject.other |
Micro-scale |
en |
dc.subject.other |
Mixed finite element formulations |
en |
dc.subject.other |
Mixed finite elements |
en |
dc.subject.other |
Mixed formulations |
en |
dc.subject.other |
P versions |
en |
dc.subject.other |
P-Version |
en |
dc.subject.other |
Stress components |
en |
dc.subject.other |
Elastohydrodynamics |
en |
dc.title |
Mixed finite element formulation for the general anti-plane shear problem, including mode III crack computations, in the framework of dipolar linear gradient elasticity |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00466-008-0340-9 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00466-008-0340-9 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
A mixed formulation is developed and numerically validated for the general 2D anti-plane shear problem in micro-structured solids governed by dipolar strain gradient elasticity. The current mixed formulation employs the form II statement of the gradient elasticity theory and uses the double stress components and the displacement field as main variables. High order, C 0-continuous, conforming basis functions are employed in the finite element approximations (p-version). The results for the mode III crack problem reveal that, with proper mesh refinement at the areas of high solution gradients, the current approximation method captures the exact solution behaviour at different length scales, which depend on the size of material micro-structure. The latter is of vital importance because, near the crack tip, the nature of the exact solution, changes radically as we proceed from the macro- to micro-scale. © 2008 Springer-Verlag. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Computational Mechanics |
en |
dc.identifier.doi |
10.1007/s00466-008-0340-9 |
en |
dc.identifier.isi |
ISI:000263360500001 |
en |
dc.identifier.volume |
43 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
715 |
en |
dc.identifier.epage |
730 |
en |