HEAL DSpace

Moment information for probability distributions, without solving the moment problem, II: Main-mass, tails and shape approximation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Gavriliadis, PN en
dc.contributor.author Athanassoulis, GA en
dc.date.accessioned 2014-03-01T01:31:15Z
dc.date.available 2014-03-01T01:31:15Z
dc.date.issued 2009 en
dc.identifier.issn 0377-0427 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19758
dc.subject Approximation en
dc.subject Chebyshev-Stieltjes-Markov inequality en
dc.subject Christoffel function en
dc.subject Distribution functions en
dc.subject Moments en
dc.subject Tail en
dc.subject.classification Mathematics, Applied en
dc.subject.other Approximation en
dc.subject.other Chebyshev-Stieltjes-Markov inequality en
dc.subject.other Christoffel function en
dc.subject.other Moments en
dc.subject.other Tail en
dc.subject.other Chebyshev approximation en
dc.subject.other Probability density function en
dc.subject.other Targets en
dc.subject.other Distribution functions en
dc.title Moment information for probability distributions, without solving the moment problem, II: Main-mass, tails and shape approximation en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.cam.2008.10.011 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.cam.2008.10.011 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract How much information does a small number of moments carry about the unknown distribution function? Is it possible to explicitly obtain from these moments some useful information, e.g., about the support, the modality, the general shape, or the tails of a distribution, without going into a detailed numerical solution of the moment problem? In this, previous and subsequent papers, clear and easy to implement answers will be given to some questions of this type. First, the question of how to distinguish between the main-mass interval and the tail regions, in the case we know only a number of moments of the target distribution function, will be addressed. The answer to this question is based on a version of the Chebyshev-Stieltjes-Markov inequality, which provides us with upper and lower, moment-based, bounds for the target distribution. Then, exploiting existing asymptotic results in the main-mass region, an explicit, moment-based approximation of the target probability density function is provided. Although the latter cannot be considered, in general, as a satisfactory solution, it can always serve as an initial approximation in any iterative scheme for the numerical solution of the moment problem. Numerical results illustrating all the theoretical statements are also presented. (C) 2008 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Journal of Computational and Applied Mathematics en
dc.identifier.doi 10.1016/j.cam.2008.10.011 en
dc.identifier.isi ISI:000266511500002 en
dc.identifier.volume 229 en
dc.identifier.issue 1 en
dc.identifier.spage 7 en
dc.identifier.epage 15 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής