dc.contributor.author |
Kyritsi, STh |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:31:17Z |
|
dc.date.available |
2014-03-01T01:31:17Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
1534-0392 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19769 |
|
dc.subject |
Critical groups |
en |
dc.subject |
Linking theorem |
en |
dc.subject |
Local minimizer |
en |
dc.subject |
Morse theory |
en |
dc.subject |
p-laplacian |
en |
dc.subject |
Second deformation theorem |
en |
dc.subject |
Three nontrivial smooth solutions |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
LINEAR ELLIPTIC-EQUATIONS |
en |
dc.subject.other |
P-LAPLACIAN |
en |
dc.subject.other |
LOCAL MINIMIZERS |
en |
dc.subject.other |
EIGENVALUE PROBLEMS |
en |
dc.subject.other |
EXISTENCE |
en |
dc.subject.other |
SIGN |
en |
dc.subject.other |
RESONANCE |
en |
dc.subject.other |
SPECTRUM |
en |
dc.subject.other |
THEOREM |
en |
dc.title |
Multiple solutions for nonlinear coercive neumann problems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.3934/cpaa.2009.8.1957 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.3934/cpaa.2009.8.1957 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
In this paper we deal with a nonlinear Neumann problem driven by the p-Laplacian and with a potential function which asymptotically at infinity is p-linear. Using variational methods based on critical point theory coupled with suitable truncation techniques, we prove a theorem establishing the existence of at least three nontrivial smooth solutions for the Neumann problem. For the semilinear case (i.e., p = 2) using Morse theory, we produce one more nontrivial smooth solution. |
en |
heal.publisher |
AMER INST MATHEMATICAL SCIENCES |
en |
heal.journalName |
Communications on Pure and Applied Analysis |
en |
dc.identifier.doi |
10.3934/cpaa.2009.8.1957 |
en |
dc.identifier.isi |
ISI:000269220800014 |
en |
dc.identifier.volume |
8 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
1957 |
en |
dc.identifier.epage |
1974 |
en |