dc.contributor.author |
Kyritsi, STh |
en |
dc.contributor.author |
Regan, DO' |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:31:17Z |
|
dc.date.available |
2014-03-01T01:31:17Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
1536-1365 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19770 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-77955789550&partnerID=40&md5=fdc20d9181f2ede5762bcd7b043be3df |
en |
dc.subject |
Linking sets |
en |
dc.subject |
Nonsmooth potential |
en |
dc.subject |
Resonance |
en |
dc.subject |
Second |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
LINEAR ELLIPTIC-EQUATIONS |
en |
dc.subject.other |
P-LAPLACIAN |
en |
dc.subject.other |
LOCAL MINIMIZERS |
en |
dc.subject.other |
NONTRIVIAL SOLUTIONS |
en |
dc.subject.other |
CONSTANT SIGN |
en |
dc.subject.other |
EXISTENCE |
en |
dc.title |
Multiple solutions for resonant hemivariational inequalities via minimax methods |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
deformation theorem, local minimizer In this paper we consider nonlinear Dirichlet problems driven by the p-Laplacian differential operator with a nonsmooth potential (hemivariational inequalities). We assume that the problem is resonant at infinity with respect to λ1 > 0 (the principal eigenvalue of the Dirichlet p-Lapalcian) from the right. Using minimax methods based on the nonsmooth critical point theory we prove an existence and a multiplicity theorem. |
en |
heal.publisher |
ADVANCED NONLINEAR STUDIES, INC |
en |
heal.journalName |
Advanced Nonlinear Studies |
en |
dc.identifier.isi |
ISI:000273305400002 |
en |
dc.identifier.volume |
9 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
453 |
en |
dc.identifier.epage |
477 |
en |