Multiplicity theorems for semilinear elliptic problems depending on a parameter

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Kristaly, A en
dc.contributor.author Papageorgiou, NS en
dc.date.accessioned 2014-03-01T01:31:17Z
dc.date.available 2014-03-01T01:31:17Z
dc.date.issued 2009 en
dc.identifier.issn 0013-0915 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19772
dc.subject Critical groups en
dc.subject Critical point en
dc.subject Local minimizer en
dc.subject Truncated functional en
dc.subject.classification Mathematics en
dc.subject.other BOUNDARY-VALUE-PROBLEMS en
dc.subject.other CONVEX NONLINEARITIES en
dc.subject.other DIRICHLET PROBLEMS en
dc.subject.other POSITIVE SOLUTIONS en
dc.subject.other CRITICAL-POINTS en
dc.subject.other P-LAPLACIAN en
dc.subject.other EQUATIONS en
dc.subject.other CONCAVE en
dc.subject.other EXISTENCE en
dc.subject.other LINKING en
dc.title Multiplicity theorems for semilinear elliptic problems depending on a parameter en
heal.type journalArticle en
heal.identifier.primary 10.1017/S0013091507000665 en
heal.identifier.secondary http://dx.doi.org/10.1017/S0013091507000665 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract We consider semilinear elliptic problems in which the right-hand-side nonlinearity depends on a parameterλ > 0. Two multiplicity results are presented, guaranteeing the existence of at least three non-trivial solutions for this kind of problem, when the parameter belongs to an interval (0,*). Our approach is based on variational techniques, truncation methods and critical groups. The first result incorporates as a special case problems with concaveconvex nonlinearities, while the second one involves concave nonlinearities perturbed by an asymptotically linear nonlinearity at infinity. © Edinburgh Mathematical Society 2009. en
heal.publisher CAMBRIDGE UNIV PRESS en
heal.journalName Proceedings of the Edinburgh Mathematical Society en
dc.identifier.doi 10.1017/S0013091507000665 en
dc.identifier.isi ISI:000263514300011 en
dc.identifier.volume 52 en
dc.identifier.issue 1 en
dc.identifier.spage 171 en
dc.identifier.epage 180 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record