HEAL DSpace

Network anomaly detection and classification via opportunistic sampling

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Androulidakis, G en
dc.contributor.author Chatzigiannakis, V en
dc.contributor.author Papavassiliou, S en
dc.date.accessioned 2014-03-01T01:31:17Z
dc.date.available 2014-03-01T01:31:17Z
dc.date.issued 2009 en
dc.identifier.issn 0890-8044 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19774
dc.subject Data mining en
dc.subject Entropy en
dc.subject Grippers en
dc.subject IP networks en
dc.subject Probability density function en
dc.subject Sampling methods en
dc.subject Web server en
dc.subject.classification Computer Science, Hardware & Architecture en
dc.subject.classification Computer Science, Information Systems en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.classification Telecommunications en
dc.subject.other Anomaly detection methods en
dc.subject.other Anomaly detections en
dc.subject.other IP networks en
dc.subject.other Network anomalies en
dc.subject.other Network anomaly detections en
dc.subject.other Sampled datum en
dc.subject.other Sampling methods en
dc.subject.other Sampling process en
dc.subject.other Sampling techniques en
dc.subject.other Traffic datum en
dc.subject.other University campus en
dc.subject.other Web server en
dc.subject.other Entropy en
dc.subject.other Grippers en
dc.subject.other Information management en
dc.subject.other Internet protocols en
dc.subject.other Web services en
dc.subject.other Probability density function en
dc.title Network anomaly detection and classification via opportunistic sampling en
heal.type journalArticle en
heal.identifier.primary 10.1109/MNET.2009.4804318 en
heal.identifier.secondary http://dx.doi.org/10.1109/MNET.2009.4804318 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract In this article the emphasis is placed on the evaluation of the impact of intelligent flow sampling techniques on the detection and classification of network anomalies. Based on the observation that for specific-purpose applications such as anomaly detection a large fraction of information is contained in a small fraction of flows, we demonstrate that by using sampling techniques that opportunistically and preferentially sample traffic data, we achieve-magnification-of the appearance of anomalies within the sampled data set and therefore improve their detection. Therefore, the inherently-lossy-sampling process is transformed to an advantageous feature in the anomaly detection case, allowing the revealing of anomalies that would be otherwise untraceable, and thus becoming the vehicle for efficient anomaly detection and classification. The evaluation of the impact of intelligent sampling techniques on the anomaly detection process is based on the application of an entropy-based anomaly detection method on a packet trace with data that has been collected from a real operational university campus network. © 2009 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Network en
dc.identifier.doi 10.1109/MNET.2009.4804318 en
dc.identifier.isi ISI:000263161900003 en
dc.identifier.volume 23 en
dc.identifier.issue 1 en
dc.identifier.spage 6 en
dc.identifier.epage 12 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής