dc.contributor.author |
Gasinski, L |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:31:20Z |
|
dc.date.available |
2014-03-01T01:31:20Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0362-546X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19782 |
|
dc.subject |
Generalized subdifferential |
en |
dc.subject |
Linking sets |
en |
dc.subject |
Nodal solutions |
en |
dc.subject |
p-Laplacian |
en |
dc.subject |
Second deformation theorem |
en |
dc.subject |
Second eigenvalue |
en |
dc.subject |
Upper-lower solutions |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
Generalized subdifferential |
en |
dc.subject.other |
Linking sets |
en |
dc.subject.other |
Nodal solutions |
en |
dc.subject.other |
p-Laplacian |
en |
dc.subject.other |
Second deformation theorem |
en |
dc.subject.other |
Second eigenvalue |
en |
dc.subject.other |
Upper-lower solutions |
en |
dc.subject.other |
Deformation |
en |
dc.subject.other |
Differential equations |
en |
dc.subject.other |
Laplace transforms |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.subject.other |
Variational techniques |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.title |
Nodal and multiple constant sign solutions for resonant p-Laplacian equations with a nonsmooth potential |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.na.2009.04.063 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.na.2009.04.063 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
In this paper we study a nonlinear Dirichlet elliptic differential equation driven by the p-Laplacian and with a nonsmooth potential (hemivariational inequality). Using a variational approach combined with suitable truncation techniques and the method of upper-lower solutions, we prove the existence of five nontrivial smooth solutions, two positive, two negative and the fifth nodal. Our hypotheses on the nonsmooth potential allow resonance at infinity with respect to the principal eigenvalue lambda(1) > 0 of (-Delta(p), W-0(1,p)(Z)). (C) 2009 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Nonlinear Analysis, Theory, Methods and Applications |
en |
dc.identifier.doi |
10.1016/j.na.2009.04.063 |
en |
dc.identifier.isi |
ISI:000270609500062 |
en |
dc.identifier.volume |
71 |
en |
dc.identifier.issue |
11 |
en |
dc.identifier.spage |
5747 |
en |
dc.identifier.epage |
5772 |
en |