dc.contributor.author |
Stefanou, G |
en |
dc.contributor.author |
Fragiadakis, M |
en |
dc.date.accessioned |
2014-03-01T01:31:20Z |
|
dc.date.available |
2014-03-01T01:31:20Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0141-0296 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19783 |
|
dc.subject |
Earthquake |
en |
dc.subject |
Fiber approach |
en |
dc.subject |
Non-Gaussian translation fields |
en |
dc.subject |
Nonlinear response history analysis |
en |
dc.subject |
Stochastic analysis |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.other |
Accelerograms |
en |
dc.subject.other |
Beam column element |
en |
dc.subject.other |
Computational advantages |
en |
dc.subject.other |
Computational stochastic mechanics |
en |
dc.subject.other |
Displacement-based elements |
en |
dc.subject.other |
Log-normal |
en |
dc.subject.other |
Material property |
en |
dc.subject.other |
Monte Carlo Simulation |
en |
dc.subject.other |
Non-Gaussian |
en |
dc.subject.other |
Non-gaussian distribution |
en |
dc.subject.other |
Non-Gaussian translation fields |
en |
dc.subject.other |
Non-linear dynamic analysis |
en |
dc.subject.other |
Nonlinear dynamic response |
en |
dc.subject.other |
Nonlinear response history analysis |
en |
dc.subject.other |
Parametric investigations |
en |
dc.subject.other |
Response variability |
en |
dc.subject.other |
Seismic action |
en |
dc.subject.other |
Seismic intensity |
en |
dc.subject.other |
Seismic records |
en |
dc.subject.other |
Specified power spectral density |
en |
dc.subject.other |
Spectral characteristics |
en |
dc.subject.other |
Steel frame |
en |
dc.subject.other |
Stochastic analysis |
en |
dc.subject.other |
Stochastic field |
en |
dc.subject.other |
Stochastic properties |
en |
dc.subject.other |
System property |
en |
dc.subject.other |
Uncertain parameters |
en |
dc.subject.other |
Young's Modulus |
en |
dc.subject.other |
Dynamic analysis |
en |
dc.subject.other |
Dynamic response |
en |
dc.subject.other |
Earthquake resistance |
en |
dc.subject.other |
Earthquakes |
en |
dc.subject.other |
Gaussian noise (electronic) |
en |
dc.subject.other |
Monte Carlo methods |
en |
dc.subject.other |
Nonlinear control systems |
en |
dc.subject.other |
Power spectral density |
en |
dc.subject.other |
Random processes |
en |
dc.subject.other |
Uncertain systems |
en |
dc.subject.other |
Uncertainty analysis |
en |
dc.subject.other |
Yield stress |
en |
dc.subject.other |
Nonlinear analysis |
en |
dc.subject.other |
dynamic response |
en |
dc.subject.other |
Monte Carlo analysis |
en |
dc.subject.other |
nonlinearity |
en |
dc.subject.other |
numerical model |
en |
dc.subject.other |
seismic response |
en |
dc.subject.other |
stochasticity |
en |
dc.subject.other |
structural response |
en |
dc.subject.other |
uncertainty analysis |
en |
dc.title |
Nonlinear dynamic analysis of frames with stochastic non-Gaussian material properties |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.engstruct.2009.02.020 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.engstruct.2009.02.020 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
The efficient prediction of the nonlinear dynamic response of structures with uncertain system properties poses a major challenge in the field of computational stochastic mechanics. In order to investigate realistic problems of structures subjected to transient seismic actions, an efficient approach is introduced. The presented methodology is used to assess the response of a steel frame modeled with a mixed fiber-based, beam-column element. The adopted modeling provides increased accuracy compared to traditional displacement-based elements and offers significant computational advantages for the analysis of systems with stochastic properties. The uncertain parameters considered are the Young's modulus and the yield stress, both described by homogeneous non-Gaussian translation stochastic fields. The frame is subjected to natural seismic records that correspond to three levels of increasing seismic intensity as well as to spectrum-compatible artificial accelerograms. Under the assumption of a pre-specified power spectral density function of the stochastic fields that describe the two uncertain parameters, the response variability is Computed using Monte Carlo simulation. A parametric investigation is carried out providing useful conclusions regarding the influence of different non-Gaussian distributions (lognormal and beta) and of the spectral characteristics of the stochastic fields on the response variability. (C) 2009 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Engineering Structures |
en |
dc.identifier.doi |
10.1016/j.engstruct.2009.02.020 |
en |
dc.identifier.isi |
ISI:000268119400019 |
en |
dc.identifier.volume |
31 |
en |
dc.identifier.issue |
8 |
en |
dc.identifier.spage |
1841 |
en |
dc.identifier.epage |
1850 |
en |