HEAL DSpace

Nonlinear dynamic analysis of Timoshenko beams by BEM. Part I: Theory and numerical implementation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sapountzakis, EJ en
dc.contributor.author Dourakopoulos, JA en
dc.date.accessioned 2014-03-01T01:31:20Z
dc.date.available 2014-03-01T01:31:20Z
dc.date.issued 2009 en
dc.identifier.issn 0924-090X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19784
dc.subject Boundary element method en
dc.subject Moderate large displacements en
dc.subject Nonlinear dynamic analysis en
dc.subject Shear center en
dc.subject Shear deformation coefficients en
dc.subject Timoshenko beam en
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Mechanics en
dc.subject.other Moderate large displacements en
dc.subject.other Nonlinear dynamic analysis en
dc.subject.other Shear center en
dc.subject.other Shear deformation coefficients en
dc.subject.other Timoshenko beam en
dc.subject.other Axial loads en
dc.subject.other Beams and girders en
dc.subject.other Bending (deformation) en
dc.subject.other Dynamic analysis en
dc.subject.other Equations of motion en
dc.subject.other Newton-Raphson method en
dc.subject.other Nonlinear analysis en
dc.subject.other Nonlinear equations en
dc.subject.other Number theory en
dc.subject.other Particle beams en
dc.subject.other Shear deformation en
dc.subject.other Boundary element method en
dc.title Nonlinear dynamic analysis of Timoshenko beams by BEM. Part I: Theory and numerical implementation en
heal.type journalArticle en
heal.identifier.primary 10.1007/s11071-009-9481-4 en
heal.identifier.secondary http://dx.doi.org/10.1007/s11071-009-9481-4 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract In this two-part contribution, a boundary element method is developed for the nonlinear dynamic analysis of beams of arbitrary doubly symmetric simply or multiply connected constant cross section, undergoing moderate large displacements and small deformations under general boundary conditions, taking into account the effects of shear deformation and rotary inertia. Part I is devoted to the theoretical developments and their numerical implementation and Part II discusses analytical and numerical results obtained from both analytical or numerical research efforts from the literature and the proposed method. The beam is subjected to the combined action of arbitrarily distributed or concentrated transverse loading and bending moments in both directions as well as to axial loading. To account for shear deformations, the concept of shear deformation coefficients is used. Five boundary value problems are formulated with respect to the transverse displacements, to the axial displacement and to two stress functions and solved using the Analog Equation Method, a BEM based method. Application of the boundary element technique yields a nonlinear coupled system of equations of motion. The solution of this system is accomplished iteratively by employing the average acceleration method in combination with the modified Newton-Raphson method. The evaluation of the shear deformation coefficients is accomplished from the aforementioned stress functions using only boundary integration. The proposed model takes into account the coupling effects of bending and shear deformations along the member, as well as the shear forces along the span induced by the applied axial loading. © 2009 Springer Science+Business Media B.V. en
heal.publisher SPRINGER en
heal.journalName Nonlinear Dynamics en
dc.identifier.doi 10.1007/s11071-009-9481-4 en
dc.identifier.isi ISI:000269885100021 en
dc.identifier.volume 58 en
dc.identifier.issue 1-2 en
dc.identifier.spage 295 en
dc.identifier.epage 306 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής