HEAL DSpace

Nonlinear dynamic analysis of Timoshenko beams by BEM. Part II: Applications and validation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sapountzakis, EJ en
dc.contributor.author Dourakopoulos, JA en
dc.date.accessioned 2014-03-01T01:31:20Z
dc.date.available 2014-03-01T01:31:20Z
dc.date.issued 2009 en
dc.identifier.issn 0924-090X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19785
dc.subject Boundary element method en
dc.subject Moderate large deflections en
dc.subject Nonlinear dynamic analysis en
dc.subject Shear center en
dc.subject Shear deformation coefficients en
dc.subject Timoshenko beam en
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Mechanics en
dc.subject.other Moderate large deflections en
dc.subject.other Nonlinear dynamic analysis en
dc.subject.other Shear center en
dc.subject.other Shear deformation coefficients en
dc.subject.other Timoshenko beam en
dc.subject.other Beams and girders en
dc.subject.other Boundary conditions en
dc.subject.other Control nonlinearities en
dc.subject.other Damping en
dc.subject.other Dynamic analysis en
dc.subject.other Nonlinear analysis en
dc.subject.other Particle beams en
dc.subject.other Shear deformation en
dc.subject.other Vibration analysis en
dc.subject.other Boundary element method en
dc.title Nonlinear dynamic analysis of Timoshenko beams by BEM. Part II: Applications and validation en
heal.type journalArticle en
heal.identifier.primary 10.1007/s11071-009-9479-y en
heal.identifier.secondary http://dx.doi.org/10.1007/s11071-009-9479-y en
heal.language English en
heal.publicationDate 2009 en
heal.abstract In this two-part contribution, a boundary element method is developed for the nonlinear dynamic analysis of beams of arbitrary doubly symmetric simply or multiply connected constant cross section, undergoing moderate large displacements and small deformations under general boundary conditions, taking into account the effects of shear deformation and rotary inertia. In Part I the governing equations of the aforementioned problem have been derived, leading to the formulation of five boundary value problems with respect to the transverse displacements, to the axial displacement and to two stress functions. These problems are numerically solved using the Analog Equation Method, a BEM based method. In this Part II, numerical examples are worked out to illustrate the efficiency, the accuracy and the range of applications of the developed method. Thus, the results obtained from the proposed method are presented as compared with those from both analytical and numerical research efforts from the literature. More specifically, the shear deformation effect in nonlinear free vibration analysis, the influence of geometric nonlinearities in forced vibration analysis, the shear deformation effect in nonlinear forced vibration analysis, the nonlinear dynamic analysis of Timoshenko beams subjected to arbitrary axial and transverse in both directions loading, the free vibration analysis of Timoshenko beams with very flexible boundary conditions and the stability under axial loading (Mathieu problem) are presented and discussed through examples of practical interest. © 2009 Springer Science+Business Media B.V. en
heal.publisher SPRINGER en
heal.journalName Nonlinear Dynamics en
dc.identifier.doi 10.1007/s11071-009-9479-y en
dc.identifier.isi ISI:000269885100022 en
dc.identifier.volume 58 en
dc.identifier.issue 1-2 en
dc.identifier.spage 307 en
dc.identifier.epage 318 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής