HEAL DSpace

Nonlinear flutter instability of thin damped plates: A solution by the analog equation method

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Katsikadelis, JT en
dc.contributor.author Babouskos, NG en
dc.date.accessioned 2014-03-01T01:31:21Z
dc.date.available 2014-03-01T01:31:21Z
dc.date.issued 2009 en
dc.identifier.issn 1559-3959 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19787
dc.subject Aerodynamic loads en
dc.subject Aeroelasticity en
dc.subject Analog equation method en
dc.subject Boundary elements en
dc.subject Follower forces en
dc.subject Instability en
dc.subject Nonlinear flutter en
dc.subject Plates en
dc.subject.classification Materials Science, Multidisciplinary en
dc.subject.classification Mechanics en
dc.subject.other FOLLOWER FORCE en
dc.subject.other PANEL FLUTTER en
dc.subject.other STABILITY en
dc.title Nonlinear flutter instability of thin damped plates: A solution by the analog equation method en
heal.type journalArticle en
heal.identifier.primary 10.2140/jomms.2009.4.1395 en
heal.identifier.secondary http://dx.doi.org/10.2140/jomms.2009.4.1395 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract We investigate the nonlinear flutter instability of thin elastic plates of arbitrary geometry subjected to a combined action of conservative and nonconservative loads in the presence of both internal and external damping and for any type of boundary conditions. The response of the plate is described in terms of the displacement field by three coupled nonlinear partial differential equations (PDEs) derived from Hamilton's principle. Solution of these PDEs is achieved by the analog equation method (AEM), which uncouples the original equations into linear, quasistatic PDEs. Specifically, these are a biharmonic equation for the transverse deflection of the plate, that is, the bending action, plus two linear Poisson's equations for the accompanying in-plane deformation, that is, the membrane action, under time-dependent fictitious loads. The fictitious loads themselves are established using the domain boundary element method (D/BEM). The resulting system for the semidiscretized nonlinear equations of motion is first transformed into a reduced problem using the aeroelastic modes as Ritz vectors and then solved by a new AEM employing a time-integration algorithm. A series of numerical examples is subsequently presented so as to demonstrate the efficiency of the proposed methodology and to validate the accuracy of the results. In sum, the AEM developed herein provides an efficient computational tool for realistic analysis of the admittedly complex phenomenon of flutter instability of thin plates, leading to better understanding of the underlying physical problem. en
heal.publisher MATHEMATICAL SCIENCE PUBL en
heal.journalName Journal of Mechanics of Materials and Structures en
dc.identifier.doi 10.2140/jomms.2009.4.1395 en
dc.identifier.isi ISI:000273570900013 en
dc.identifier.volume 4 en
dc.identifier.issue 7-8 en
dc.identifier.spage 1395 en
dc.identifier.epage 1414 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής