dc.contributor.author |
Sapountzakis, EJ |
en |
dc.contributor.author |
Tsipiras, VJ |
en |
dc.date.accessioned |
2014-03-01T01:31:21Z |
|
dc.date.available |
2014-03-01T01:31:21Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0045-7949 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19788 |
|
dc.subject |
Boundary element method |
en |
dc.subject |
Composite bar |
en |
dc.subject |
Inelastic |
en |
dc.subject |
Uniform torsion |
en |
dc.subject |
Wagner strain |
en |
dc.subject |
Warping |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.other |
Boundary value problems |
en |
dc.subject.other |
Differential equations |
en |
dc.subject.other |
Elastoplasticity |
en |
dc.subject.other |
Initial value problems |
en |
dc.subject.other |
Military operations |
en |
dc.subject.other |
Numerical analysis |
en |
dc.subject.other |
Polymer matrix composites |
en |
dc.subject.other |
Rigidity |
en |
dc.subject.other |
Rotation |
en |
dc.subject.other |
Strain |
en |
dc.subject.other |
Strain hardening |
en |
dc.subject.other |
Stress-strain curves |
en |
dc.subject.other |
Thin walled structures |
en |
dc.subject.other |
Torsional stress |
en |
dc.subject.other |
Weaving |
en |
dc.subject.other |
Composite bar |
en |
dc.subject.other |
Inelastic |
en |
dc.subject.other |
Uniform torsion |
en |
dc.subject.other |
Wagner strain |
en |
dc.subject.other |
Warping |
en |
dc.subject.other |
Boundary element method |
en |
dc.title |
Nonlinear inelastic uniform torsion of composite bars by BEM |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.compstruc.2008.11.005 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.compstruc.2008.11.005 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
In this paper the elastic-plastic uniform torsion analysis of composite cylindrical bars of arbitrary cross-section consisting of materials in contact, each of which can surround a finite number of inclusions, taking into account the effect of geometric nonlinearity is presented employing the boundary element method. The stress-strain relationships for the materials are assumed to be elastic-plastic-strain hardening. The incremental torque-rotation relationship is computed based on the finite displacement (finite rotation) theory, that is the transverse displacement components are expressed so as to be valid for large rotations and the longitudinal normal strain includes the second-order geometric nonlinear term often described as the "Wagner strain". The proposed formulation does not stand on the assumption of a thin-walled structure and therefore the cross-section's torsional rigidity is evaluated exactly without using the so-called Saint Venant's torsional constant. The torsional rigidity of the cross-section is evaluated directly employing the primary warping function of the cross-section depending on both its shape and the progress of the plastic region. A boundary value problem with respect to the aforementioned function is formulated and solved employing a BEM approach. The influence of the second Piola-Kirch-hoff normal stress component to the plastic/elastic moment ratio in uniform inelastic torsion is demonstrated. (C) 2008 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Computers and Structures |
en |
dc.identifier.doi |
10.1016/j.compstruc.2008.11.005 |
en |
dc.identifier.isi |
ISI:000263433100002 |
en |
dc.identifier.volume |
87 |
en |
dc.identifier.issue |
3-4 |
en |
dc.identifier.spage |
151 |
en |
dc.identifier.epage |
166 |
en |