dc.contributor.author |
Polyzois, DJ |
en |
dc.contributor.author |
Raftoyiannis, IG |
en |
dc.date.accessioned |
2014-03-01T01:31:22Z |
|
dc.date.available |
2014-03-01T01:31:22Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0939-1533 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19792 |
|
dc.subject |
Composites |
en |
dc.subject |
FRP poles |
en |
dc.subject |
Large displacements |
en |
dc.subject |
Nonlinear FEA |
en |
dc.subject |
Stability |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Fiber reinforced plastics |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Poles |
en |
dc.subject.other |
Reinforced plastics |
en |
dc.subject.other |
Shells (structures) |
en |
dc.subject.other |
Commercial finite element codes |
en |
dc.subject.other |
Composites |
en |
dc.subject.other |
Fiber-reinforced polymer composites |
en |
dc.subject.other |
Finite elements |
en |
dc.subject.other |
FRP poles |
en |
dc.subject.other |
Geometric nonlinear analysis |
en |
dc.subject.other |
Illustrative examples |
en |
dc.subject.other |
Large deformations |
en |
dc.subject.other |
Large displacements |
en |
dc.subject.other |
Linear analysis |
en |
dc.subject.other |
Non-linear strains |
en |
dc.subject.other |
Nonlinear FEA |
en |
dc.subject.other |
Nonlinear shells |
en |
dc.subject.other |
Ovalization |
en |
dc.subject.other |
Overall buckling |
en |
dc.subject.other |
Semi-analytical finite elements |
en |
dc.subject.other |
Type analysis |
en |
dc.subject.other |
Type structures |
en |
dc.subject.other |
Nonlinear analysis |
en |
dc.title |
Nonlinear shell-type to beam-type fea simplifications for composite frp poles |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00419-008-0239-0 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00419-008-0239-0 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
This paper presents a semi-analytical finite element analysis of pole-type structures with circular hollow cross-section. Based on the principle of stationary potential energy and Novozhilov's derivation of nonlinear strains, the formulations for the geometric nonlinear analysis of general shells are derived. The nonlinear shell-type analysis is then manipulated and simplified gradually into a beam-type analysis with special emphasis given on the relationships of shell-type to beam-type and nonlinear to linear analyses. Based on the theory of general shells and the finite element method, the approach presented herein is employed to analyze the ovalization of the cross-section, large displacements, the P-Δ effect as well as the overall buckling of pole-type structures. Illustrative examples are presented to demonstrate the applicability and the efficiency of the present technique to the large deformation of fiber-reinforced polymer composite poles accompanied with comparisons employing commercial finite element codes. © 2008 Springer-Verlag. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Archive of Applied Mechanics |
en |
dc.identifier.doi |
10.1007/s00419-008-0239-0 |
en |
dc.identifier.isi |
ISI:000263670400006 |
en |
dc.identifier.volume |
79 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
347 |
en |
dc.identifier.epage |
358 |
en |