dc.contributor.author |
Gasinski, L |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:31:22Z |
|
dc.date.available |
2014-03-01T01:31:22Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0362-546X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19793 |
|
dc.subject |
C-condition |
en |
dc.subject |
Linking sets |
en |
dc.subject |
Minimax expression |
en |
dc.subject |
p-Laplacian |
en |
dc.subject |
Resonance |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
Critical-point theory |
en |
dc.subject.other |
Differential operators |
en |
dc.subject.other |
Eigen-value |
en |
dc.subject.other |
Linking sets |
en |
dc.subject.other |
Minimax |
en |
dc.subject.other |
Minimax Characterization |
en |
dc.subject.other |
Neumann problem |
en |
dc.subject.other |
Nontrivial solution |
en |
dc.subject.other |
P-Laplacian |
en |
dc.subject.other |
Principal eigenvalues |
en |
dc.subject.other |
Reaction terms |
en |
dc.subject.other |
Strong solution |
en |
dc.subject.other |
Sublinear |
en |
dc.subject.other |
Variational methods |
en |
dc.subject.other |
Differential equations |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Equations of state |
en |
dc.subject.other |
Laplace equation |
en |
dc.subject.other |
Laplace transforms |
en |
dc.subject.other |
Mathematical operators |
en |
dc.subject.other |
Resonance |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.title |
Nontrivial solutions for a class of resonant p-Laplacian Neumann problems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.na.2009.06.039 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.na.2009.06.039 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
We consider a nonlinear Neumann problem driven by the p-Laplacian differential operator with a Caratheodory reaction term. We assume that asymptotically at infinity resonance occurs with respect to the principal eigenvalue lambda(0) = 0 (i.e., the reaction term is p - 1-sublinear near +infinity). Using variational methods based on the critical point theory and an alternative minimax characterization of the first nonzero eigenvalue lambda(1) > 0, we show that the problem has a nontrivial smooth strong solution. (C) 2009 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Nonlinear Analysis, Theory, Methods and Applications |
en |
dc.identifier.doi |
10.1016/j.na.2009.06.039 |
en |
dc.identifier.isi |
ISI:000272606300046 |
en |
dc.identifier.volume |
71 |
en |
dc.identifier.issue |
12 |
en |
dc.identifier.spage |
6365 |
en |
dc.identifier.epage |
6372 |
en |