dc.contributor.author |
Hu, S |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:31:22Z |
|
dc.date.available |
2014-03-01T01:31:22Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
1230-3429 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19794 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-77956487602&partnerID=40&md5=be40e8cf61979ecdd34447edd013a0f7 |
en |
dc.subject |
AR-condition |
en |
dc.subject |
C-condition |
en |
dc.subject |
Local linking |
en |
dc.subject |
Periodic solution |
en |
dc.subject |
Spectral resolution |
en |
dc.subject |
Superquadratic potential |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
HAMILTONIAN-SYSTEMS |
en |
dc.subject.other |
EQUATIONS |
en |
dc.subject.other |
INFINITY |
en |
dc.title |
Nontrivial solutions for superquadratic nonautonomous periodic systems |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
We consider a nonautonomous second order periodic system with an indefinite linear part. We assume that the potential function is superquadratic, but it may not satisfy the Ambrosetti-Rabinowitz condition. Using an existence result for C1-functionals having a local linking at the origin, we show that the system has at least one nontrivial solution. © 2009 Juliusz Schauder Center for Nonlinear Studies. |
en |
heal.publisher |
JULIUSZ SCHAUDER CTR NONLINEAR STUDIES |
en |
heal.journalName |
Topological Methods in Nonlinear Analysis |
en |
dc.identifier.isi |
ISI:000273066000008 |
en |
dc.identifier.volume |
34 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
327 |
en |
dc.identifier.epage |
338 |
en |