HEAL DSpace

Numerical simulation of contraction and expansion flows of Langmuir monolayers

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mitsoulis, E en
dc.contributor.author Argyropaidas, I en
dc.date.accessioned 2014-03-01T01:31:27Z
dc.date.available 2014-03-01T01:31:27Z
dc.date.issued 2009 en
dc.identifier.issn 0377-0257 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19800
dc.subject Contraction flows en
dc.subject Expansion flows en
dc.subject Integral constitutive equations en
dc.subject Langmuir monolayers en
dc.subject Olley model en
dc.subject Planar extensional viscosity en
dc.subject Vortex formation en
dc.subject.classification Mechanics en
dc.subject.other Air en
dc.subject.other Electron energy levels en
dc.subject.other Expansion en
dc.subject.other Fluid dynamics en
dc.subject.other Hardening en
dc.subject.other Monolayers en
dc.subject.other Phase interfaces en
dc.subject.other Shrinkage en
dc.subject.other Viscosity en
dc.subject.other Vortex flow en
dc.subject.other Contraction flows en
dc.subject.other Expansion flows en
dc.subject.other Integral constitutive equations en
dc.subject.other Langmuir monolayers en
dc.subject.other Olley model en
dc.subject.other Planar extensional viscosity en
dc.subject.other Vortex formation en
dc.subject.other Constitutive equations en
dc.title Numerical simulation of contraction and expansion flows of Langmuir monolayers en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.jnnfm.2008.10.007 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.jnnfm.2008.10.007 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract Langmuir monolayers consist of amphiphilic molecules at the air-water interface and can be modeled as two-dimensional fluids. Earlier experiments [D.J. Olson, G.G. Fuller, J. Non-Newtonian Fluid Mech. 89 (2000) 187-207] on 4:1 contraction and 4:1 expansion flows have been simulated using an integral constitutive equation of the K-BKZ type, suitably modified to account for strain-thickening in the planar extensional viscosity. The model has been used to fit linear viscoelastic data (G' and G '') and the shear viscosity (eta(S)), while the amount of strain-hardening is assumed, due to lack of experimental data. The simulations are in good agreement with the experiments on Newtonian monolayers. which show no vortices in the contraction but large inertial vortices in the expansion. For the viscoelastic monolayer (a poly-octadecyl methacrylate or PODMA), the opposite is true. The contraction flow shows vortices, while in the expansion flow the Vortex activity is substantially reduced compared with the Newtonian one. The viscoelastic behavior is well captured by the model, provided that Substantial strain-thickening is exhibited by the monolayer in planar extension. The latter behavior is very much like that for a branched LDPE melt, which also shows big vortices due to strain-hardening in planar as well as in uniaxial extension. (C) 2008 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Journal of Non-Newtonian Fluid Mechanics en
dc.identifier.doi 10.1016/j.jnnfm.2008.10.007 en
dc.identifier.isi ISI:000264250300007 en
dc.identifier.volume 157 en
dc.identifier.issue 3 en
dc.identifier.spage 163 en
dc.identifier.epage 174 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής