dc.contributor.author |
Kolaitis, DI |
en |
dc.contributor.author |
Founti, MA |
en |
dc.date.accessioned |
2014-03-01T01:31:29Z |
|
dc.date.available |
2014-03-01T01:31:29Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
1386-6184 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19801 |
|
dc.subject |
Two-phase CFD |
en |
dc.subject |
Cool flames |
en |
dc.subject |
Droplet evaporation |
en |
dc.subject |
Low-temperature oxidation |
en |
dc.subject.classification |
Thermodynamics |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
LOW-TEMPERATURE OXIDATION |
en |
dc.subject.other |
N-HEPTANE OXIDATION |
en |
dc.subject.other |
EXPERIMENTAL VALIDATION |
en |
dc.subject.other |
TURBULENT COMBUSTION |
en |
dc.subject.other |
IGNITION PHENOMENA |
en |
dc.subject.other |
HYDROCARBON FUELS |
en |
dc.subject.other |
KINETIC-MODELS |
en |
dc.subject.other |
AUTOIGNITION |
en |
dc.subject.other |
CHEMISTRY |
en |
dc.subject.other |
FLOWS |
en |
dc.title |
Numerical Simulation of Diesel Spray Evaporation in a "Stabilized Cool Flame" Reactor: A Comparative Study |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10494-008-9171-1 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10494-008-9171-1 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
The major objective of this work is to numerically investigate the interacting physical and chemical phenomena that characterize the flow in a stabilized cool flame diesel fuel spray evaporation system. A two-phase RANS computational fluid dynamics code has been developed and used to predict the characteristics of the developing turbulent, multiphase, multi-component, reactive flow-field. The code employs a Eulerian-Lagrangian approach, taking into account the mass, momentum, thermal and turbulent energy exchange between the phases. A variety of physical phenomena, such as turbulent dispersion, droplet evaporation, droplet-wall collision, conjugate heat transfer, drift correction, two-way coupling are taken into account by implementing respective sub-models. Two alternative modelling approaches for the simulation of cool flame reactions have been validated and evaluated by comparing numerical predictions with experimental data from two atmospheric pressure, evaporating Diesel spray, Stabilized Cool Flame reactors. Both models have achieved good quantitative agreement in the majority of the considered test cases. The results have been used to estimate the local physical and chemical characteristic time scales of the occurring phenomena, thus allowing, for the first time, the classification of stabilized cool flames. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
FLOW TURBULENCE AND COMBUSTION |
en |
dc.identifier.doi |
10.1007/s10494-008-9171-1 |
en |
dc.identifier.isi |
ISI:000266037600010 |
en |
dc.identifier.volume |
82 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
599 |
en |
dc.identifier.epage |
619 |
en |