dc.contributor.author |
Zarbouti, D |
en |
dc.contributor.author |
Stiakogiannakis, I |
en |
dc.contributor.author |
Tsoulos, G |
en |
dc.contributor.author |
Athanasiadou, G |
en |
dc.contributor.author |
Kaklamani, D |
en |
dc.date.accessioned |
2014-03-01T01:31:30Z |
|
dc.date.available |
2014-03-01T01:31:30Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0140-3664 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19805 |
|
dc.subject |
Adaptive modulation |
en |
dc.subject |
Orthogonal frequency division multiple access (OFDMA) |
en |
dc.subject |
Power control |
en |
dc.subject |
Subcarrier allocation |
en |
dc.subject.classification |
Computer Science, Information Systems |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Telecommunications |
en |
dc.subject.other |
Access control |
en |
dc.subject.other |
Beamforming |
en |
dc.subject.other |
Blocking probability |
en |
dc.subject.other |
Civil aviation |
en |
dc.subject.other |
Delta modulation |
en |
dc.subject.other |
Frequency allocation |
en |
dc.subject.other |
Frequency division multiple access |
en |
dc.subject.other |
Frequency division multiplexing |
en |
dc.subject.other |
Management |
en |
dc.subject.other |
Modulation |
en |
dc.subject.other |
Orthogonal frequency division multiplexing |
en |
dc.subject.other |
Power control |
en |
dc.subject.other |
Resource allocation |
en |
dc.subject.other |
Telecommunication networks |
en |
dc.subject.other |
Wireless networks |
en |
dc.subject.other |
Bit rates |
en |
dc.subject.other |
Cell coordinations |
en |
dc.subject.other |
Channel conditions |
en |
dc.subject.other |
Data rate services |
en |
dc.subject.other |
Frequency re use |
en |
dc.subject.other |
High throughputs |
en |
dc.subject.other |
Interference mitigations |
en |
dc.subject.other |
Loading factors |
en |
dc.subject.other |
Lower complexity |
en |
dc.subject.other |
Multicellular environments |
en |
dc.subject.other |
Orthogonal frequency division multiple access (OFDMA) |
en |
dc.subject.other |
Performance gains |
en |
dc.subject.other |
Power controlled |
en |
dc.subject.other |
Power levels |
en |
dc.subject.other |
Radio resource managements |
en |
dc.subject.other |
Simulation results |
en |
dc.subject.other |
Subcarrier allocation |
en |
dc.subject.other |
Subchannel allocations |
en |
dc.subject.other |
Wireless systems |
en |
dc.subject.other |
Adaptive modulation |
en |
dc.title |
OFDMA techniques in multicellular networks with total frequency reuse |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.comcom.2008.09.011 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.comcom.2008.09.011 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
Orthogonal frequency division multiple access (OFDMA) techniques are investigated in this paper. Five subchannel allocation algorithms are analysed and their performance in a multicellular environment is evaluated with simulations. Four schemes of lower complexity, suitable for the early deployment of wireless systems, are compared with a more computationally demanding scheme with respect to their blocking probability, loading factor and offered bit rate. The channel condition of each carrier is calculated and its knowledge is used for power controlled adaptive modulation, as an essential feature of the OFDMA technique. The general radio resource management process is divided into two steps: in the first step a base station allocates carriers to users while in the second step the modulation and power levels for each allocated carrier are defined. The simulation results demonstrate that a wireless system in its early deployment phase (up to 15-30% blocking probability) can employ simple OFDMA techniques capable of achieving high throughput. Furthermore, it is demonstrated that two of the proposed lower complexity schemes, (those based on cell coordination), offer good performance gain for higher data rate services. Nevertheless, these schemes achieve relatively lower gains with adaptive modulation, when compared with the techniques which exploit interference averaging or adaptive interference mitigation. (C) 2008 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Computer Communications |
en |
dc.identifier.doi |
10.1016/j.comcom.2008.09.011 |
en |
dc.identifier.isi |
ISI:000263995700009 |
en |
dc.identifier.volume |
32 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
522 |
en |
dc.identifier.epage |
530 |
en |